in

Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard

  • 1.

    Rao, G. D., Sui, J. K. & Zhang, J. G. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol Open 5, 829–836 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Li, T. et al. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil. Soil Till Res 195, 104428 (2019).

  • 3.

    Sharma, P. et al. Green manure as part of organic management cycle: effects on changes in organic matter characteristics across the soil profile. Geoderma 305, 197–207 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Nivelle, E. et al. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl. Soil Ecol. 108, 147–155 (2016).

    Article 

    Google Scholar 

  • 5.

    Mbuthia, L. W. et al. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol Biochem. 89, 24–34 (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Chavarria, D. N. et al. Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. Eur. J. Soil Biol. 76, 74–82 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Zhao, S. et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 216, 82–88 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Tian, Y., Zhang, X., Wang, J. & Gao, L. Soil microbial communities associated with the rhizosphere of cucumber under different summer cover crops and residue management: A 4-year field experiment. Sci. Hort. 150, 100–109 (2013).

    Article 

    Google Scholar 

  • 9.

    Capo-Bauca, S., Marques, A., Llopis-Vidal, N., Bota, J. & Baraza, E. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecol. Eng. 127, 285–291 (2019).

    Article 

    Google Scholar 

  • 10.

    Saikia, R., Sharma, S., Thind, H. S., Sidhu, H. S. & Yadvinder, S. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 103, 383–394 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Acosta-Martinez, V. et al. Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biol. Fert. Soils 47, 655–667 (2011).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Sharma, S. & Dhaliwal, S. S. Conservation agriculture based practices enhanced micronutrients transformation in earthworm cast soil under rice-wheat cropping system. Ecol Eng 163, 106195 (2021).

  • 13.

    Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: A US metaanalysis. Geoderma 369, 114335 (2020).

  • 14.

    Roper, M. M. & Gupta, V. V. S. R. Management practices and soil biota. Aust. J. Soil Res. 33, 321–339 (1995).

    Article 

    Google Scholar 

  • 15.

    Wortman, S. E., Drijber, R. A., Francis, C. A. & Lindquist, J. L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 72, 232–241 (2013).

    Article 

    Google Scholar 

  • 16.

    Drijber, R. A., Doran, J. W., Parkhurst, A. M. & Lyon, D. J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil. Biol. Biochem. 32, 1419–1430 (2000).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Qian, X. et al. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil Biol. 70, 23–30 (2015).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Verzeaux, J. et al. Cover crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil. Geoderma 281, 49–57 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Rothe, M., Darnaudery, M. & Thuries, L. Organic fertilizers, green manures and mixtures of the two revealed their potential as substitutes for inorganic fertilizers used in pineapple cropping. Sci. Hort. 257, 108691 (2019)

  • 20.

    Lupwayi, N. Z., Larney, F. J., Blackshaw, R. E., Kanashiro, D. A. & Pearson, D. C. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil Till Res. 168, 1–10 (2017).

    Article 

    Google Scholar 

  • 21.

    Li, L., Larney, F. J., Angers, D. A., Pearson, D. C. & Blackshaw, R. E. Surface soil quality attributes following 12 years of conventional and conservation management on irrigated rotations in Southern Alberta. Soil Sci. Soc. Am. J. 79, 930–942 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Xu, Z. et al. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Appl. Soil Ecol. 86, 19–29 (2015).

    Article 

    Google Scholar 

  • 23.

    Cusack, D. F., Silver, W. L., Torn, M. S., Burton, S. D. & Firestone, M. K. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92, 621–632 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Masai, E., Katayama, Y. & Fukuda, M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci. Biotechnol. Biochem. 71, 1–15 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Falchini, L., Naumova, N., Kuikman, P. J., Bloem, J. & Nannipieri, P. CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol. Biochem. 35, 775–782 (2003).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Liang, S., Grossman, J. & Shi, W. Soil microbial responses to winter, legume cover crop management during organic transition. Eur. J. Soil Biol. 65, 15–22 (2014).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Cruz, C., Green, J. J., Watson, C. A., Wilson, F. & Martins-Loução, M. A. Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14, 177–184 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Wu, Q. S., Zou, Y. N., He, X. H. & Luo, P. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf) seedlings. Plant Growth Regul. 65, 273–278 (2011).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Gutjahr, C. & Paszkowski, U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front. Plant Sci. 4, 204 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Endlweber, K. & Scheu, S. Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol. Fertil. Soils 43, 741–749 (2007).

    Article 

    Google Scholar 

  • 32.

    Stevens, K. J., Wall, C. B. & Janssen, J. A. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrate L., grown under three levels of water availability. Mycorrhiza 21, 279–288 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Peng, L., Wen, Z., An, X., Han, J. & Jiang, Y. M. Effects of interplanting grass on utilization, loss and accumulation of 15N in apple orchard. Acta Pedol. Sin. 52, 950–956 (2015).

    Google Scholar 

  • 34.

    Sánchez, E. E. et al. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant Soil 292, 193–203 (2007).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Zhang, C. P., Meng, P., Zhang, J. S. & Wan, X. C. Effects of a nitrogen fixing plant Vigna radiata on growth, leaf stomatal gas exchange and hydraulic characteristics of the intercropping Juglans regia seedlings. Chin. J. Plant Ecol. 38, 499–506 (2014).

    Article 

    Google Scholar 

  • 36.

    Li, Y. Y., Hu, H. S., Cheng, X., Sun, J. H. & Li, L. Effects of interspecific interactions and nitrogen fertilization rates on above-and below-growth in faba bean/mazie intercropping system. Acta Ecol. Sin. 31, 1617–1630 (2011).

    Google Scholar 

  • 37.

    Nyamadzawo, G., Nyamangara, J., Nyamugafata, P. & Muzulu, A. Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe. Soil Tillage Res. 102, 151–157 (2009).

    Article 

    Google Scholar 

  • 38.

    Xiao, D. et al. Microbial biomass, metabolic functional diversity, and activity are affected differently by tillage disturbance and maize planting in a typical karst calcareous soil. J. Soil Sediment. 19, 809–821 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Elfstrand, S., Bath, B. & Martensson, A. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl. Soil Ecol. 36, 70–82 (2007).

    Article 

    Google Scholar 

  • 40.

    Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol. Lett. 16, 887–894 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Sinsabaugh, R. L. & Moorhead, D. L. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26, 1305–1311 (1994).

    Article 

    Google Scholar 

  • 42.

    DeForest, J. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 41, 1180–1186 (2009).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil. Biol. Biochem. 34, 1309–1315 (2002).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Schutter, M. E. & Dick, R. P. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64, 1659–1668 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Bowles, T. M., Acosta-Martinez, V., Calderon, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    A peculiar state of matter in layers of semiconductors