in

Nutrient-related metabolite profiles explain differences in body composition and size in Nile tilapia (Oreochromis niloticus) from different lakes

  • 1.

    Cury, P. M. et al. Global seabird response to forage fish depletion—one-third for the birds. Science 23(6063), 1703–1706 (2011).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Pikitch, K. E. The risks of overfishing. Science 338, 474–475. https://doi.org/10.1126/science.1229965 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    F.A.O. The State of World Fisheries and Aquaculture. Meeting the Sustainable Development Goals. Italy, Rome, http://www.fao.org/documents/card/en/c/I9540EN/ (2018).

  • 4.

    Branch, G. M. & Steffani, C. N. Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). J. Exp. Mar. Biol. Ecol. 300, 189–215. https://doi.org/10.1016/j.jembe.2003.12.007 (2004).

    Article 

    Google Scholar 

  • 5.

    de Graaf, M. M. et al. Declining stocks of Lake Tana’s endemic Barbus species flock (Pisces, Cyprinidae): natural variation or human impact?. Biol. Conserv. 116, 277–287. https://doi.org/10.1016/S0006-3207(03)00198-8 (2004).

    Article 

    Google Scholar 

  • 6.

    Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in the global wetland area. Mar. Freshwater. Res. 65, 934–941. https://doi.org/10.1071/MF14173 (2014).

    Article 

    Google Scholar 

  • 7.

    Landrigan, P. J. et al. The lancet commission on pollution and health. Lancet 91, 462–512. https://doi.org/10.1016/S0140-6736(17)32345-0 (2018).

    Article 

    Google Scholar 

  • 8.

    Döll, P. et al. Integrating risks of climate change into water management. Hydrol. Sci. J. 60, 4–13. https://doi.org/10.1080/02626667.2014.967250 (2015).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Whitehead, P. R. et al. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54, 101–123. https://doi.org/10.1623/hysj.54.1.101 (2009).

    Article 

    Google Scholar 

  • 10.

    Knouft, J. H. & Ficklin, D. L. The potential impacts of climate change on biodiversity in flowing freshwater systems. Annu. Rev. Ecol Evol. Syst. 48, 111–133 (2017).

    Article 

    Google Scholar 

  • 11.

    Claireaux, G. & Chabot, G. Responses by fishes to environmental hypoxia: integration through Fry’s concept of aerobic metabolic scope. J. Fish. Biol. 88, 232–251. https://doi.org/10.1111/jfb.12833 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Hadjinikolova, L., Nikolova, L. & Stoeva, A. Comparative investigations on the nutritive value of carp fish meat (Cyprinidae), grown at organic aquaculture conditions. Bulg. J. Agric. Sci. 14, 127–132 (2008).

    Google Scholar 

  • 13.

    Ljubojević, D. et al. Fat quality of marketable fresh water fish species in the Republic of Serbia. Czech. J. Food Sci. 31, 445–450. https://doi.org/10.17221/53/2013-CJFS (2013).

    Article 

    Google Scholar 

  • 14.

    Pyz-Łukasik, R. & Paszkiewicz, W. Species variations in the proximate composition, amino acid profile, and protein quality of the muscle tissue of grass carp, bighead carp, Siberian sturgeon, and wels catfish. J. Food. Qual. 2018, 2625401. https://doi.org/10.1155/2018/2625401 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Enders, E. C. & Boisclair, D. Effects of environmental fluctuations on fish metabolism: Atlantic salmon Salmo salar as a case study. J. Fish. Biol. 88, 344–358. https://doi.org/10.1111/jfb.12786 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Zheng, J. L. et al. Dietary L-carnitine supplementation increases lipid deposition in the liver and muscle of yellow catfish (Pelteobagrus fulvidraco) through changes in lipid metabolism. Br. J. Nutr. 112, 698–708. https://doi.org/10.1017/S0007114514001378 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Geda, F. et al. β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage. Fish. Physiol. Biochem. 41, 281–287. https://doi.org/10.1007/s10695-014-0024-7 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Sabzi, E., Mohammadiazarm, H. & Salati, A. P. Effect of dietary L-carnitine and lipid levels on growth performance, blood biochemical parameters, and antioxidant status in juvenile common carp (Cyprinus carpio). Aquaculture 480, 89–93. https://doi.org/10.3390/antiox10010036 (2017).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Geda, F. et al. Changes in intestinal morphology and amino acid catabolism in common carp at mildly elevated temperature as affected by dietary mannan oligosaccharides. Anim. Feed. Sci. Technol. 178, 95–102 (2012).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Geda, F. et al. The metabolic response in fish to mildly elevated water temperature relates to species-dependent muscular concentrations of imidazole compounds and free amino acids. J. Therm. Biol. 65, 57–63 (2017).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Li, J. M. et al. Corrigendum: systemic regulation of L-carnitine in nutritional metabolism in zebrafish. Danio rerio. Sci. Rep. 7, 44970. https://doi.org/10.1038/srep44970 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Butler, P. J., Green, J. A., Boyd, I. L. & Speakman, J. R. Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods. Funct. Ecol. 18, 168–183. https://doi.org/10.1111/j.0269-8463.2004.00821.x (2004).

    Article 

    Google Scholar 

  • 23.

    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. 109, 19310–19314 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    McKnight, C. L. et al. Introduction to metabolism. In Surgical Metabolism (eds Davis, K. & Rosenbaum, S.) (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-39781-4_1.

    Chapter 

    Google Scholar 

  • 25.

    Li, L. Y. et al. Mitochondrial fatty acid β-oxidation inhibition promotes glucose utilization and protein deposition through energy homeostasis remodeling in fish. J. Nutr. 150, 2322–2335 (2020).

    Article 

    Google Scholar 

  • 26.

    Miyaaki, H. et al. Blood carnitine profiling on tandem mass spectrometry in liver cirrhotic patients. BMC Gastroenterol. 20, 41. https://doi.org/10.1186/s12876-020-01190-6 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Worku, K. et al. Measuring seasonal and agro-ecological effects on nutritional status in tropical ranging dairy cows. J. Dairy Sci. 104, 4341–4349 (2021).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Brenes-Soto, A. et al. Gaining insights in the nutritional metabolism of amphibians: analyzing body nutrient profiles of the African clawed frog. Xenopus laevis. PeerJ. 7, e7365 (2019).

    Article 

    Google Scholar 

  • 29.

    Tilahun, G. & Ahlgren, G. Seasonal variations in phytoplankton biomass and primary production in the Ethiopian Rift Valley lakes Ziway, Awassa, and Chamo-The basis for fish production. Limnlogica 40, 330–342. https://doi.org/10.1016/j.limno.2009.10.005 (2010).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Vijverberg, J. et al. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiology 722, 45–60. https://doi.org/10.1007/s10750-013-1674-7 (2014).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Dagne, A., Herzig, A., Jersabek, C. & Tadesse, Z. Abundance, species composition and spatial distribution of planktonic rotifers and crustaceans in Lake Ziway (Rift Valley, Ethiopia). Int. Rev. Hydrobiol. 93, 210–226. https://doi.org/10.1002/iroh.200711005 (2008).

    Article 

    Google Scholar 

  • 32.

    Engdaw, F., Dadebo, E. & Nagappan, R. Morphometric relationships and feeding habits of Nile tilapia Oreochromis niloticus (L.) (Pisces: Cichlidae) from Lake Koka, Ethiopia. Int. J. Fish. Aquat. Sci. 2, 65–71 (2013).

    Google Scholar 

  • 33.

    Gouni, M. M. & Sommer, U. Review: effects of harmful blooms of large-sized and colonial cyanobacteria on aquatic food webs. Water 12, 1587. https://doi.org/10.3390/w12061587 (2020).

    Article 

    Google Scholar 

  • 34.

    Menezes, R. F., Attayde, J. L. & Vasconcelos, F. R. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshw. Biol. 55, 767–779 (2010).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Ibrahim, A. F. N., Noll, M. S. C. & Valenti, W. C. Zooplankton capturing by Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae) throughout post-larval development. Zologica 32, 469–475. https://doi.org/10.1590/S1984-46702015000600006 (2015).

    Article 

    Google Scholar 

  • 36.

    Ambelu, A., Lock, K. & Goethals, P. L. M. Hydrological and anthropogenic influence in the Gilgel Gibe I reservoir (Ethiopia) on macroinvertebrate assemblages. Lake. Reserv. Manag. 29, 143–150. https://doi.org/10.1080/10402381.2013.806971 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Bayissa, T. N. et al. The impact of lake ecosystems on mineral concentrations in tissues of Nile tilapia (Oreochromis Niloticus L.). Animals 11, 1000 (2021).

    Article 

    Google Scholar 

  • 38.

    Puvvada, Y., Vankayalapati, S. & Sukhavasi, S. Extraction of chitin from chitosan from the exoskeleton of shrimp for application in the pharmaceutical industry. Int. Curr. Pharm. J. 1, 258–263. https://doi.org/10.3329/icpj.v1i9.11616 (2012).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Zhang, D., Jin, Y., Deng, Y., Wang, D. & Zhao, Y. Production of chitin from shrimp shell powders using Serratia Marcescens B742 and Lactobacillus Plantarum ATCC 8014 successive two-step fermentation. Carbohydr. Res. 362, 13–20. https://doi.org/10.1016/j.carres.2012.09.011 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Philibert, T., Lee, B. H. & Fabien, N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 181, 1314–1337. https://doi.org/10.1007/s12010-016-2286-2 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Matsumiya, M. & Mochizuki, A. Distribution of chitinase and β-N-acetylhexosaminidase in the organs of several fishes. Fish Res. 62, 150–151. https://doi.org/10.2331/fishsci.62.150 (1996).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Gutowska, M. A., Drazen, J. C. & Robison, B. H. Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comput. Biochem. Physiol. 139, 351–358 (2004).

    Article 

    Google Scholar 

  • 43.

    Molinari, L. M. et al. Identification and partial characterization of a chitinase from Nile tilapia, Oreochromis niloticus. Comput. Biochem. Physiol. 146, 81–87 (2007).

    Article 

    Google Scholar 

  • 44.

    Cauchie, H. M. Chitin production by arthropods in the hydrosphere. Hydrobiol. 470, 63–96. https://doi.org/10.1023/A:1015615819301 (2002).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Merga, L. B. et al. Trends in chemical pollution and ecological status of Lake Ziway, Ethiopia: a review focusing on nutrients, metals and pesticides. Afr. J. Aquat. Sci. 45, 386–400 (2020).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Clark, T. D. et al. The efficacy of field techniques for obtaining and storing blood samples from fishes. J. Fish. Biol. 79, 1322–1333. https://doi.org/10.1111/j.1095-8649.2011.03118.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Ferguson, H. Blood sampling standard operating procedure. Aquatic Animal Diseases Lab Manual, Department of Integrative Biology, University of Guelph, Quelph, Canada. https://www.uoguelph.ca/ib/sites/uoguelph.ca.ib/files/public/fishbloodsamplingSOP.pdf (2005).

  • 48.

    Arends, R. J., Mancera, J. M., Muñoz, J. L., Wendelaar Bonga, S. E. & Flik, G. The stress response of the gilthead seabream (Sparus aurata L.) to air exposure and confinement. J. Endocr. 163, 149–157. https://doi.org/10.1677/joe.0.1630149 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Zytkovicz, T. H. et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. Clin. Chem. 47, 1945–1955 (2001).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Vieira Neto, E. et al. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry. Braz. J. Med. Biol. Res. 45, 546–556. https://doi.org/10.1590/S0100-879X2012007500056 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    AOAC. Official methods of analysis of the Association of Official Analytical Chemists, 15th ed. Methods 962.09, 954.01. AOAC, Arlington, VA, USA. https://archive.org/stream/gov.law.aoac.methods.1.1990/aoac.methods.1.1990_djvu.txt (1990).

  • 52.

    Pearson, D. Pearson Composition and Analysis of Foods (University of Reading, Reading, 1999).

    Google Scholar 


  • Source: Ecology - nature.com

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    A peculiar state of matter in layers of semiconductors