in

A meta-analysis of the ecological and economic outcomes of mangrove restoration

  • 1.

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Carrasquilla-Henao, M. & Juanes, F. Mangroves enhance local fisheries catches: a global meta-analysis. Fish Fish 18, 79–93 (2017).

    Article 

    Google Scholar 

  • 3.

    Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl Acad. Sci. USA 116, 12232–12237 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Spalding, M. & Parrett, C. L. Global patterns in mangrove recreation and tourism. Mar. Policy 110, 103540 (2019).

    Article 

    Google Scholar 

  • 5.

    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human‐driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Maiti, S. K. & Chowdhury, A. Effects of anthropogenic pollution on mangrove biodiversity: a review. J. Environ. Prot. 4, 1428–1434 (2013).

    Article 

    Google Scholar 

  • 8.

    Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting A Critical Opportunity (Apollo – University of Cambridge Repository, 2018).

  • 10.

    Bosire, J. O. et al. Functionality of restored mangroves: a review. Aquat. Bot. 89, 251–259 (2008).

    Article 

    Google Scholar 

  • 11.

    Lewis, R. R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24, 403–418 (2005).

    Article 

    Google Scholar 

  • 12.

    Howard, R. J. et al. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone: hydrologic restoration in a mangrove-marsh ecotone. Restor. Ecol. 25, 471–482 (2017).

    Article 

    Google Scholar 

  • 13.

    Kamali, B. & Hashim, R. Mangrove restoration without planting. Ecol. Eng. 37, 387–391 (2011).

    Article 

    Google Scholar 

  • 14.

    Dung, L. V., Tue, N. T., Nhuan, M. T. & Omori, K. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. Ecol. Manag. 380, 31–40 (2016).

    Article 

    Google Scholar 

  • 15.

    Das, S. Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev. 94, 492–502 (2017).

    Article 

    Google Scholar 

  • 16.

    Deng, J. et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary, Fujian, China. Ecotoxicol. Environ. Saf. 180, 501–508 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Rahman, M. M. & Mahmud, Md. A. Economic feasibility of mangrove restoration in the Southeastern Coast of Bangladesh. Ocean Coast. Manag. 161, 211–221 (2018).

    Article 

    Google Scholar 

  • 18.

    Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Ellison, A. M. Mangrove restoration: do we know enough? Restor. Ecol. 8, 219–229 (2000).

    Article 

    Google Scholar 

  • 20.

    Iftekhar. Functions and development of reforested mangrove areas: a review. Int. J. Biodivers. Sci. Manag. 4, 1–14 (2008).

    Article 

    Google Scholar 

  • 21.

    Lewis, R. Mangrove Restoration: Costs And Benefits Of Successful Ecological Restoration. p. 4–8 (Beijer International Institute of Ecological Economics, Stockholm, 2001).

  • 22.

    Altman, N. & Krzywinski, M. Analyzing outliers: influential or nuisance? Nat. Methods 13, 281–282 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front. Mar. Sci. 5, 376 (2018).

    Article 

    Google Scholar 

  • 24.

    Chowdhury, A., Naz, A., Bhattacharyya, S. & Sanyal, P. Cost–benefit analysis of ‘Blue Carbon’ sequestration by plantation of few key mangrove species at Sundarban Biosphere Reserve, India. Carbon. Manag. 9, 575–586 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Sillanpää, M., Vantellingen, J. & Friess, D. A. Vegetation regeneration in a sustainably harvested mangrove forest in West Papua, Indonesia. Ecol. Manag. 390, 137–146 (2017).

    Article 

    Google Scholar 

  • 26.

    Sasmito, S. D. et al. Effect of land‐use and land‐cover change on mangrove blue carbon: a systematic review. Glob. Change Biol. 25, 4291–4302 (2019).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Meli, P., Rey Benayas, J. M., Balvanera, P. & Martínez Ramos, M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PLoS ONE 9, e93507 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Barral, M. P., Rey Benayas, J. M., Meli, P. & Maceira, N. O. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. Agric. Ecosyst. Environ. 202, 223–231 (2015).

    Article 

    Google Scholar 

  • 29.

    Ren, Y., Lü, Y. & Fu, B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: a meta-analysis. Ecol. Eng. 95, 542–550 (2016).

    Article 

    Google Scholar 

  • 30.

    Lu, W. et al. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala. PLoS ONE 9, e91238 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Li, W. et al. Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary. For. Ecosyst. 2, 21 (2015).

    Article 

    Google Scholar 

  • 32.

    Zhang, J., Shen, C., Ren, H., Wang, J. & Han, W. Estimating change in sedimentary organic carbon content during mangrove restoration in southern china using carbon isotopic measurements. Pedosphere 22, 58–66 (2012).

    Article 

    Google Scholar 

  • 33.

    Feng, J. et al. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China. CATENA 180, 1–7 (2019).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Leung, J. Y. S. Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: implication for the impact of restoration and afforestation. Glob. Ecol. Conserv. 4, 423–433 (2015).

    Article 

    Google Scholar 

  • 35.

    Peters, J. R., Yeager, L. A. & Layman, C. A. Comparison of fish assemblages in restored and natural mangrove habitats along an urban shoreline. Bull. Mar. Sci. 91, 125–139 (2015).

    Article 

    Google Scholar 

  • 36.

    Chen, G., Gao, M., Pang, B., Chen, S. & Ye, Y. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages. Ecol. Manag. 422, 87–94 (2018).

    Article 

    Google Scholar 

  • 37.

    Cameron, C., Hutley, L. B., Friess, D. A. & Brown, B. Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecol. Appl. 29, e01810 (2019).

  • 38.

    Ashton, E. C., Hogarth, P. J. & Macintosh, D. J. A comparison of brachyuran crab community structure at four mangrove locations under different management systems along the Melaka Straits-Andaman Sea Coast of Malaysia and Thailand. Estuaries 26, 1461–1471 (2003).

    Article 

    Google Scholar 

  • 39.

    Peralta-Milan, S. A. & Salmo, S. G. III Evaluating patterns of fish assemblage changes from different-aged reforested mangroves in lingayen gulf. J. Environ. Sci. Manag. 16, 11–19 (2013).

    Google Scholar 

  • 40.

    Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).

    Article 

    Google Scholar 

  • 41.

    Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870–872 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Funct. Ecol. 35, 774–786 (2021).

    Article 

    Google Scholar 

  • 43.

    Kirui, B., Kairo, J., Skov, M., Mencuccini, M. & Huxham, M. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Mar. Ecol. Prog. Ser. 465, 1–10 (2012).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Zimmer, M. In Threats to Mangrove Forests. (eds Makowski, C. & Finkl, C. W.) (Springer Berlin Heidelberg, New York, 2018).

  • 45.

    Fazlioglu, F. & Chen, L. Introduced non-native mangroves express better growth performance than co-occurring native mangroves. Sci. Rep. 10, 3854 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    He, Z. et al. Colonization by native species enhances the carbon storage capacity of exotic mangrove monocultures. Carbon Balance Manag. 15, 28 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Kodikara, K. A. S., Mukherjee, N., Jayatissa, L. P., Dahdouh-Guebas, F. & Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka: evaluation of mangrove restoration in Sri Lanka. Restor. Ecol. 25, 705–716 (2017).

    Article 

    Google Scholar 

  • 48.

    Thornton, A. Publication bias in meta-analysis its causes and consequences. J. Clin. Epidemiol. 53, 207–216 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Song, F., Hooper & Loke, Y. Publication bias: what is it? How do we measure it? How do we avoid it? Open Access J. Clin. Trials 5, 71–81 (2013).

  • 50.

    Møller, A. P. & Jennions, M. D. Testing and adjusting for publication bias. Trends Ecol. Evol. 16, 580–586 (2001).

    Article 

    Google Scholar 

  • 51.

    Salem, M. E. & Mercer, D. E. The economic value of mangroves: a meta-analysis. Sustainability 4, 359–383 (2012).

    Article 

    Google Scholar 

  • 52.

    Lahjie, A. M., Nouval, B., Lahjie, A. A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Research 8, 9 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Hutchison, J., Spalding, M. & zu Ermgassen, P. The Role of Mangroves in Fisheries Enhancement (The Nature Conservancy and Wetlands International, 2014).

  • 54.

    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 56.

    De Groot, R. S. et al. Benefits of investing in ecosystem restoration: investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).

    Article 

    Google Scholar 

  • 57.

    Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327 (2020).

    Article 

    Google Scholar 

  • 58.

    Jakovac, C. C. et al. Costs and carbon benefits of mangrove conservation and restoration: a global analysis. Ecol. Econ. 176, 106758 (2020).

    Article 

    Google Scholar 

  • 59.

    Waltham, N. J. et al. UN decade on ecosystem restoration 2021–2030—what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).

    Article 

    Google Scholar 

  • 60.

    United Nations. Sustainable Development. Blue Economy Concept Paper (2014).

  • 61.

    UNEP. Blue Economy: Sharing Success Stories to Inspire Change (UNEP Regional Seas Report and Studies, 2015).

  • 62.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • 63.

    CBD. Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).

  • 64.

    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    IUCN & Ramsar. The Community of Ocean Action for Mangroves –Towards the Implementation of SDG14 (Department of Economic and Social Affairs, United Nations, 2019).

  • 66.

    International Council for Science (ICSU). A Guide to SDG Interactions: From Science To Implementation (International Council for Science, Paris, 2017).

  • 67.

    Spalding, M. D. et al. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).

    Article 

    Google Scholar 

  • 68.

    Aronson, J. et al. Are socioeconomic benefits of restoration adequately quantified? a meta-analysis of recent papers (2000-2008) in Restoration Ecology and 12 other scientific Journals. Restor. Ecol. 18, 143–154 (2010).

    Article 

    Google Scholar 

  • 69.

    Cooke, S. J. et al. Evidence-based restoration in the Anthropocene-from acting with purpose to acting for impact: evidence-based restoration. Restor. Ecol. 26, 201–205 (2018).

    Article 

    Google Scholar 

  • 70.

    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135–1135 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Thompson, B. S., Clubbe, C. P., Primavera, J. H., Curnick, D. & Koldewey, H. J. Locally assessing the economic viability of blue carbon: a case study from Panay Island, the Philippines. Ecosyst. Serv. 8, 128–140 (2014).

    Article 

    Google Scholar 

  • 72.

    Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).

    Article 

    Google Scholar 

  • 73.

    Peng, Y., Li, X., Wu, K., Peng, Y. & Chen, G. Effect of an integrated mangrove-aquaculture system on aquacultural health. Front. Biol. China 4, 579–584 (2009).

    Article 

    Google Scholar 

  • 74.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G., The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Betran, A. P. et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod. Health 12, 57 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Mupepele, A. C., Walsh, J. C., Sutherland, W. J. & Dormann, C. F. An evidence assessment tool for ecosystem services and conservation studies. Ecol. Appl. 26, 1295–1301 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Field, C. B. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3 (1998).

    Article 

    Google Scholar 

  • 78.

    Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    Article 

    Google Scholar 

  • 79.

    Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).

    Article 

    Google Scholar 

  • 80.

    Noble, D. W. A., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 26, 2410–2425 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 81.

    Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Hoekstra, R., Finch, S., Kiers, H. A. L. & Johnson, A. Probability as certainty: dichotomous thinking and the misuse of p values. Psychon. Bull. Rev. 13, 1033–1037 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 84.

    Hedges, L. & Olkin, I. Statistical Methods For Meta-analysis (Academic Press, Orlando, 1985).

  • 85.

    Thompson, S. G. & Higgins, J. P. T. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 21, 1559–1573 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Cook, R. D. & Weisberg, S. Residuals and Influence in Regression (Chapman and Hall, New York, 1982).

  • 87.

    Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).

  • 90.

    van der Ploeg, S., De Groot, D. & Wang, Y. The TEEB Valuation Database: Overview Of Structure, Data And Results (Foundation for Sustainable Development, Wageningen, 2010).

  • 91.

    Mukherjee, N. et al. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises. PLoS ONE 9, e107706 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 92.

    Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 93.

    Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).

    Article 

    Google Scholar 

  • 94.

    Bayraktarov, E. et al. Priorities and motivations of marine coastal restoration. Res. Front. Mar. Sci. 7, 484 (2020).

    Article 

    Google Scholar 

  • 95.

    Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    van Aert, R. C. M., Wicherts, J. M. & van Assen, M. A. L. M. Conducting meta-analyses based on p values: reservations and recommendations for applying p-Uniform and p-Curve. Perspect. Psychol. Sci. 11, 713–729 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Terrin, N., Schmid, C. H., Lau, J. & Olkin, I. Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 22, 2113–2126 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 98.

    Giri, C. et al. Global Distribution of Mangroves USGS. UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) https://doi.org/10.34892/1411-W728 (2011).

  • 99.

    Cook, B. G., Cook, L. & Therrien, W. J. Group-difference effect sizes: gauging the practical importance of findings from group-experimental research. Learn. Disabil. Res. Pract. 33, 56–63 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    A peculiar state of matter in layers of semiconductors