in

Network structure of resource use and niche overlap within the endophytic microbiome

[adace-ad id="91168"]
  • 1.

    Borer ET, Seabloom EW, Mitchell CE, Cronin JP. Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland. Oikos. 2014;123:214–24.

    Article 

    Google Scholar 

  • 2.

    Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci. 2013;110:11911–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type developmental stage and soil nutrient availability. Plant Soil. 2016;405:381–96.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Lambers JHR, Harpole WS, Tilman D, Knops J, Reich PB. Mechanisms responsible for the positive diversity–productivity relationship in minnesota grasslands. Ecol Lett. 2004;7:661–8.

    Article 

    Google Scholar 

  • 6.

    Essarioui A, LeBlanc N, Kistler HC, Kinkel LL. Plant community richness mediates inhibitory interactions and resource competition between Streptomyces and fusarium populations in the rhizosphere. Micro Ecol. 2017;74:157–67.

    Article 

    Google Scholar 

  • 7.

    Pan Y, Cassman N, de Hollander M, Mendes LW, Korevaar H, Geerts RH, et al. Impact of long-term n, p, k, and npk fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol. 2014;90:195–205.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Schlatter DC, DavelosBaines AL, Xiao K, Kinkel LL. Resource use of soilborne Streptomyces varies with location phylogeny, and nitrogen amendment. Micro Ecol. 2013;66:961–71.

    Article 

    Google Scholar 

  • 9.

    Firn J, McGree JM, Harvey E, Flores-Moreno H, Schütz M, Buckley YM, et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat Ecol Evol. 2019;3:400–6.

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Anderson TM, Griffith DM, Grace JB, Lind EM, Adler PB, Biederman LA, et al. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecol. 2018;99:822–31.

    Article 

    Google Scholar 

  • 11.

    Bernstein N, Gorelick J, Zerahia R, Koch S. Impact of n, p, k, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L.). Front Plant Sci. 2019;10:736.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Tangolar S, Tangolar S, Torun AA, Ada M, Göçmez S. Influence of supplementation of vineyard soil with organic substances on nutritional status, yield and quality of ‘black magic’ grape (Vitis vinifera L.) and soil microbiological and biochemical characteristics. OENO One. 2020;54:1143–57.

    Article 
    CAS 

    Google Scholar 

  • 13.

    De Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA. Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Funct Ecol. 2016;30:314–25.

    Article 

    Google Scholar 

  • 14.

    Dietrich R, Ploss K, Heil M. Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply. Plant Cell Environ. 2004;27:896–906.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Bryant JP, Chapin III FS, Klein DR. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 1983;40:357–68.

  • 16.

    Kinkel LL, Otto-Hanson LK, Otto-Hansen Z, Johnson M, Spawn S, Song Z, et al. Foliar endophytic microbiome composition and functional capacities vary with soil nutrient inputs. Phytopathol. 2018;108:77.

    Google Scholar 

  • 17.

    Seabloom EW, Condon B, Kinkel L, Komatsu KJ, Lumibao CY, May G, et al. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecol. 2019;100:e02758.

    Article 

    Google Scholar 

  • 18.

    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. N. Phytol. 2015;206:1196–206.

    Article 

    Google Scholar 

  • 19.

    Stulberg E, Fravel D, Proctor LM, Murray DM, LoTempio J, Chrisey L, et al. An assessment of US microbiome research. Nat Microbiol. 2016;1:15015.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Hanson BM, Weinstock GM. The importance of the microbiome in epidemiologic research. Ann Epidemiol. 2016;26:301–5.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Bell TH, Hockett KL, Alcalá-Briseño RI, Barbercheck M, Beattie GA, Bruns MA, et al. Manipulating wild and tamed phytobiomes: Challenges and opportunities. Phytobiomes J 2019;3:3–21.

    Article 

    Google Scholar 

  • 22.

    Henning JA, Kinkel L, May G, Lumibao CY, Seabloom EW, Borer ET. Plant diversity and litter accumulation mediate the loss of foliar endophyte fungal richness following nutrient addition. Ecol. 2021;102:e03210.

    Article 

    Google Scholar 

  • 23.

    Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst. 2016;47:1–24.

    Article 

    Google Scholar 

  • 24.

    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:1–10.

    Article 
    CAS 

    Google Scholar 

  • 26.

    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Sanchez-Gorostiaga A, Bajić D, Osborne ML, Poyatos JF, Sanchez A. High-order interactions distort the functional landscape of microbial consortia. PLOS Biol. 2019;17:e3000550.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. Microbiome interactions shape host fitness. Proc Natl Acad Sci. 2018;115:E11951–E11960.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    O’Keeffe KR. Within-host Microbial Interactions and Plant Parasites: From Pairwise Interactions to the Microbiome. PhD thesis, The University of North Carolina at Chapel Hill, 2019.

  • 30.

    Wemheuer F, Kaiser K, Karlovsky P, Daniel R, Vidal S, Wemheuer B. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci Rep. 2017;7:1–13.

    Article 
    CAS 

    Google Scholar 

  • 31.

    Wemheuer B, Thomas T, Wemheuer F. Fungal endophyte communities of three agricultural important grass species differ in their response towards management regimes. Microorg. 2019;7:37.

    CAS 
    Article 

    Google Scholar 

  • 32.

    Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017;25:217–28.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Barabási AL Network science. (Cambridge University Press, Cambridge, 2016).

    Google Scholar 

  • 34.

    Scott J. Social network analysis. Sociol. 1988;22:109–27.

    Article 

    Google Scholar 

  • 35.

    Borgatti SP, Mehra A, Brass DJ, Labianca G. Network analysis in the social sciences. Science. 2009;323:892–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Nelson GD, Rae A. An economic geography of the United States: from commutes to megaregions. PLOS ONE. 2016;11:e0166083.

    Article 
    CAS 

    Google Scholar 

  • 37.

    Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, et al. Networks and the epidemiology of infectious disease. Interdiscip Perspectives on Infect Dis. 2011.

  • 38.

    Expert P, Evans TS, Blondel VD, Lambiotte R. Uncovering space-independent communities in spatial networks. Proc Natl Acad Sci. 2011;108:7663–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Röttjers L, Faust K. From hairballs to hypotheses—biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Naqvi A, Rangwala H, Keshavarzian A, Gillevet P. Network-based modeling of the human gut microbiome. Chem Biodivers. 2010;7:1040–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: networks, competition, and stability. Sci. 2015;350:663–6.

    CAS 
    Article 

    Google Scholar 

  • 42.

    Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, McSpadden Gardener BB, Kinkel LL, et al. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathol. 2016;106:1083–96.

    CAS 
    Article 

    Google Scholar 

  • 43.

    Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL. Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Mol Ecol. 2014;23:1571–83.

    PubMed 
    Article 

    Google Scholar 

  • 44.

    van der Heijden MG, Hartmann M. Networking in the plant microbiome. PLOS Biol. 2016;14:e1002378.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Lau MK, Borrett SR, Baiser B, Gotelli NJ, Ellison AM. Ecological network metrics: opportunities for synthesis. Ecosphere. 2017;8:e01900.

    Article 

    Google Scholar 

  • 46.

    Billick I, Case TJ. Higher order interactions in ecological communities: what are they and how can they be detected? Ecol. 1994;75:1529–43.

    Article 

    Google Scholar 

  • 47.

    Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13:2647–55.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Vaz Jauri P, Bakker MG, Salomon CE, Kinkel LL. Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil Streptomyces. PLOS ONE. 2013;8:e81064.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol Evol. 2014;5:65–73.

    Article 

    Google Scholar 

  • 50.

    Borer ET, Grace JB, Harpole WS, MacDougall AS, Seabloom EW. A decade of insights into grassland ecosystem responses to global environmental change. Nat Ecol Evol. 2017;1:1–7.

    Article 

    Google Scholar 

  • 51.

    Essarioui A, LeBlanc N, Kistler HC, Kinkel LL. Plant host and community diversity impact the dynamics of resource use by soil Streptomyces. Phytopathol. 2014;104:38.

    Google Scholar 

  • 52.

    LeBlanc N, Essarioui A, Kinkel LL, Kistler HC. Fusarium community structure and carbon metabolism phenotypes respond to grassland plant community richness and plant host. Phytopathol. 2014;104:67.

    Article 

    Google Scholar 

  • 53.

    Essarioui A, Kistler HC, Kinkel LL. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities. Plant Soil. 2016;409:329–43.

    CAS 
    Article 

    Google Scholar 

  • 54.

    Essarioui A, LeBlanc N, Otto-Hanson L, Schlatter DC, Kistler HC, Kinkel LL. Inhibitory and nutrient use phenotypes among coexisting fusarium and Streptomyces populations suggest local coevolutionary interactions in soil. Environ Microbiol. 2020;22:976–85.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L. Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Micro Ecol. 2009;57:413–20.

    Article 

    Google Scholar 

  • 56.

    Kinkel LL, Schlatter DC, Xiao K, Baines AD. Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 2013;8:249–56.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E 2006;74:016110.

    Article 
    CAS 

    Google Scholar 

  • 58.

    Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nat. 1998;393:440–2.

    CAS 
    Article 

    Google Scholar 

  • 59.

    Allesina S, Levine JM. A competitive network theory of species diversity. Proc Natl Acad Sci. 2011;108:5638–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Maynard DS, Bradford MA, Lindner DL, van Diepen LT, Frey SD, Glaeser JA, et al. Diversity begets diversity in competition for space. Nat Ecol Evol. 2017;1:1–8.

    Article 

    Google Scholar 

  • 61.

    Maynard DS, Crowther TW, Bradford MA. Competitive network determines the direction of the diversity–function relationship. Proc Natl Acad Sci. 2017;114:11464–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Gallien L, Zimmermann NE, Levine JM, Adler PB. The effects of intransitive competition on coexistence. Ecol Lett. 2017;20:791–800.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Schlatter DC, Song Z, Vaz-Jauri P, Kinkel LL. Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. PLOS ONE. 2019;14:e0223779.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Milo R. Network motifs: simple building blocks of complex networks. Sci. 2002;298:824–7.

    CAS 
    Article 

    Google Scholar 

  • 65.

    Case TJ, Bender EA. Testing for higher order interactions. Am Nat. 1981;118:920–9.

    Article 

    Google Scholar 

  • 66.

    Levine JM, Bascompte J, Adler PB, Allesina S. Beyond pairwise mechanisms of species coexistence in complex communities. Nat. 2017;546:56–64.

    CAS 
    Article 

    Google Scholar 

  • 67.

    Mayfield MM, Stouffer DB. Higher-order interactions capture unexplained complexity in diverse communities. Nat Ecol Evol. 2017;1:0062.

    Article 

    Google Scholar 

  • 68.

    Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol. 2017;1:0109.

    Article 

    Google Scholar 

  • 69.

    Bender EA, Canfield E. The asymptotic number of labeled graphs with given degree sequences. J Comb Theory Ser A 1978;24:296–307.

    Article 

    Google Scholar 

  • 70.

    Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103:8577–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Guo X, Boedicker JQ. The contribution of high-order metabolic interactions to the global activity of a four-species microbial community. PLOS Comput Biol. 2016;12:e1005079.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Borrelli JJ, Allesina S, Amarasekare P, Arditi R, Chase I, Damuth J, et al. Selection on stability across ecological scales. Trends Ecol Evol. 2015;30:417–25.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Davis GH, Crofoot MC, Farine DR. Estimating the robustness and uncertainty of animal social networks using different observational methods. Anim Behav. 2018;141:29–44.

    Article 

    Google Scholar 

  • 74.

    Gilbertson ML, White LA, Craft ME. Trade-offs with telemetry-derived contact networks for infectious disease studies in wildlife. Methods Ecol Evol. 2020;12:76–87.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Grilli J, Barabás G, Michalska-Smith MJ, Allesina S. Higher-order interactions stabilize dynamics in competitive network models. Nat. 2017;548:210–3.

    CAS 
    Article 

    Google Scholar 

  • 76.

    Letten AD, Stouffer DB. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol Lett. 2019;22:423–36.

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Dormann CF, Roxburgh SH. Experimental evidence rejects pairwise modelling approach to coexistence in plant communities. Proc R Soc B Biol Sci. 2005;272:1279–85.

    Article 

    Google Scholar 

  • 78.

    Staniczenko PP, Kopp JC, Allesina S. The ghost of nestedness in ecological networks. Nat Commun. 2013;4:1–6.

    Article 
    CAS 

    Google Scholar 

  • 79.

    Großkopf T, Soyer OS. Synthetic microbial communities. Curr Opin Microbiol. 2014;18:72–77.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 80.

    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.

    Google Scholar 


  • Source: Ecology - nature.com

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    A peculiar state of matter in layers of semiconductors