Inda ME, Broset E, Lu TK, de la Fuente-Nunez C. Emerging frontiers in microbiome engineering. Trends Immunol. 2019;40:952–73.
Google Scholar
Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Loffler FE, O’Malley MA, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol. 2019;17:725–41.
Google Scholar
Qiu ZG, Egidi E, Liu HW, Kaur S, Singh BK. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv. 2019;37:107371.
Google Scholar
Enam F, Mansell TJ. Prebiotics: tools to manipulate the gut microbiome and metabolome. J Ind Microbiol Biotechnol. 2019;46:1445–59.
Google Scholar
Ke J, Wang B, Yoshikuni Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 2021;39:244–61.
Google Scholar
Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017;9:1021.
Google Scholar
Finkel OM, Castrillo G, Paredes SH, Gonzalez IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.
Google Scholar
Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 2019;37:140–51.
Google Scholar
Kolar CS, Lodge DM. Progress in invasion biology: predicting invaders. Trends Ecol Evol. 2001;16:199–204.
Google Scholar
Cairns J, Heckman JR. Restoration ecology: the state of an emerging field. Annu Rev Environ Resour. 1996;21:167–89.
Wainwright CE, Staples TL, Charles LS, Flanagan TC, Lai HR, Loy X, et al. Links between community ecology theory and ecological restoration are on the rise. J Appl Ecol. 2018;55:570–81.
Google Scholar
Mallon CA, Le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41.
Google Scholar
Enders M, Hutt MT, Jeschke JM. Drawing a map of invasion biology based on a network of hypotheses. Ecosphere. 2018;9:e02146.
Google Scholar
Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.
Wittmann MJ, Metzler D, Gabriel W, Jeschke JM. Decomposing propagule pressure: the effects of propagule size and propagule frequency on invasion success. Oikos 2014;123:441–50.
Google Scholar
Hulvey KB, Leger EA, Porensky LM, Roche LM, Veblen KE, Fund A, et al. Restoration islands: a tool for efficiently restoring dryland ecosystems? Restor Ecol. 2017;25:S124–S34.
Google Scholar
Funk JL, Hoffacker MK, Matzek V. Summer irrigation, grazing and seed addition differentially influence community composition in an invaded serpentine grassland. Restor Ecol. 2015;23:122–30.
Google Scholar
Jones ML, Ramoneda J, Rivett DW, Bell T. Biotic resistance shapes the influence of propagule pressure on invasion success in bacterial communities. Ecology 2017;98:1743–9.
Google Scholar
Albright MBN, Sevanto S, Gallegos Graves LV, Dunbar J. Biotic interactions are more important than propagule pressure in microbial community invasions. Mbio 2020;11:e02089–20.
Google Scholar
Vila JCC, Jones ML, Patel M, Bell T, Rosindell J. Uncovering the rules of microbial community invasions. Nat Ecol Evol. 2019;3:1162–71.
Google Scholar
Simberloff D. The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst. 2009;40:81–102.
Google Scholar
Zhou JZ, Ning DL. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.
Google Scholar
Comeau Y, Greer CW, Samson R. Role of inoculum preparation and density on the bioremediation of 2,4-D-contaminated soil by bioaugmentation. Appl Microbiol Biotechnol. 1993;38:681–7.
Google Scholar
Choudhary S, Schmidt-Dannert C. Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol. 2010;86:1267–79.
Google Scholar
Kreitschitz A, Haase E, Gorb SN. The role of mucilage envelope in the endozoochory of selected plant taxa. Sci Nat-Heidelb. 2021;108:2.
Google Scholar
Gornish E, Arnold H, Fehmi J. Review of seed pelletizing strategies for arid land restoration. Restor Ecol. 2019;27:1206–11.
Google Scholar
Ali M, Oshiki M, Rathnayake L, Ishii S, Satoh H, Okabe S. Rapid and successful start-up of anammox process by immobilizing the minimal quantity of biomass in PVA-SA gel beads. Water Res. 2015;79:147–57.
Google Scholar
Gallien L, Mazel F, Lavergne S, Renaud J, Douzet R, Thuiller W. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biol Invasions. 2015;17:1407–23.
Google Scholar
Cadotte MW, Campbell SE, Li SP, Sodhi DS, Mandrak NE. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev Plant Biol. 2018;69:661–84.
Google Scholar
Fick SE, Day N, Duniway MC, Hoy-Skubik S, Barger NN. Microsite enhancements for soil stabilization and rapid biocrust colonization in degraded drylands. Restor Ecol. 2020;28:S139–S49.
Google Scholar
Vasquez E, Sheley R, Svejcar T. Creating invasion resistant soils via nitrogen management. Invas Plant Sci Man. 2008;1:304–14.
Google Scholar
Zhao X, Wang W, Blaine A, Kane ST, Zijlstra RT, Ganzle MG. Impact of probiotic Lactobacillus sp. on autochthonous lactobacilli in weaned piglets. J Appl Microbiol. 2019;126:242–54.
Google Scholar
Muthukrishnan R, Hansel-Welch N, Larkin DJ. Environmental filtering and competitive exclusion drive biodiversity-invasibility relationships in shallow lake plant communities. J Ecol. 2018;106:2058–70.
Google Scholar
Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19:1366–78.
Google Scholar
Thompson IP, van der Gast CJ, Ciric L, Singer AC. Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol. 2005;7:909–15.
Google Scholar
Bell TH, Bell T. Many roads to bacterial generalism. Fems Microbiol Ecol. 2021;97:fiaa240.
Campieri M, Rizzello F, Venturi A, Poggioli G, Ugolini F, Helwig U, et al. Combination of antibiotic and probiotic treatment is efficacious in prophylaxis of post-operative recurrence of Crohn’s disease: a randomized controlled study vs mesalamine. Gastroenterology 2000;118:A781–A.
Google Scholar
Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, et al. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. Msphere. 2017;2:e00501–17.
Google Scholar
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.
Google Scholar
Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 2018;557:434–8.
Google Scholar
Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science. 2016;353:583–6.
Google Scholar
Umu OCO, Rudi K, Diep DB. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Micro Ecol Health Dis. 2017;28:1348886.
Sriswasdi S, Yang CC, Iwasaki W. Generalist species drive microbial dispersion and evolution. Nat Commun. 2017;8:1162.
Google Scholar
McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc B. 2015;370:20140298.
Google Scholar
Shahab RL, Brethauer S, Luterbacher JS, Studer MH. Engineering of ecological niches to create stable artificial consortia for complex biotransformations. Curr Opin Biotechnol. 2020;62:129–36.
Google Scholar
Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.
Google Scholar
Upton RN, Bach EM, Hofmockel KS. Spatio-temporal microbial community dynamics within soil aggregates. Soil Biol Biochem. 2019;132:58–68.
Google Scholar
Bezkorovainy A. Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr. 2001;73:399s–405s.
Google Scholar
Tripathi S, Srivastava P, Devi R, Bhadouria R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In: Prasad MNV (ed). Agrochemicals detection, treatment and remediation. (Butterworth-Heinemann, 2020) pp 25-54.
Dykhuizen DE, Hartl DL. Selection in chemostats. Microbiol Rev. 1983;47:150–68.
Google Scholar
Zhao D, Wu SG, Feng WW, Jakovlic I, Tran NT, Xiong F. Adhesion and colonization properties of potentially probiotic Bacillus paralicheniformis strain FA6 isolated from grass carp intestine. Fish Sci. 2020;86:153–61.
Google Scholar
Wang XY, Cao ZP, Zhang MM, Meng L, Ming ZZ, Liu JY. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. Sci Adv. 2020;6:eabb1952.
Google Scholar
Ali SA, Singh P, Tomar SK, Mohanty AK, Behare P. Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. J Proteom. 2020;213:103600.
Google Scholar
Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev. 2013;88:15–30.
Google Scholar
Funk JL, Cleland EE, Suding KN, Zavaleta ES. Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol. 2008;23:695–703.
Google Scholar
Northfield TD, Laurance SGW, Mayfield MM, Paini DR, Snyder WE, Stouffer DB, et al. Native turncoats and indirect facilitation of species invasions. Proc Biol Sci. 2018;285:20171936.
Google Scholar
Gagnon K, Rinde E, Bengil EGT, Carugati L, Christianen MJA, Danovaro R, et al. Facilitating foundation species: the potential for plant-bivalve interactions to improve habitat restoration success. J Appl Ecol. 2020;57:1161–79.
Google Scholar
Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 2018;174:1406–23.
Google Scholar
Garcia-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science. 2018;361:eaat2456.
Google Scholar
Maynard DS, Crowther TW, Bradford MA. Competitive network determines the direction of the diversity-function relationship. Proc Natl Acad Sci USA. 2017;114:11464–9.
Google Scholar
Feichtmayer J, Deng L, Griebler C. Antagonistic microbial interactions: contributions and potential applications for controlling pathogens in the aquatic systems. Front Microbiol. 2017;8:2192.
Google Scholar
Fuchslin HP, Schneider C, Egli T. In glucose-limited continuous culture the minimum substrate concentration for growth, s(min), is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium. ISME J. 2012;6:777–89.
Google Scholar
Beaury EM, Finn JT, Corbin JD, Barr V, Bradley BA. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecol Lett. 2020;23:476–82.
Google Scholar
Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.
Google Scholar
Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature. 2017;548:407–12.
Google Scholar
Perez-Gutierrez RA, Lopez-Ramirez V, Islas A, Alcaraz LD, Hernandez-Gonzalez I, Olivera BCL, et al. Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J. 2013;7:487–97.
Google Scholar
Safferman RS, Morris ME. Evaluation of natural products for algicidal properties. Appl Microbiol. 1962;10:289–92.
Google Scholar
Russel J, Roder HL, Madsen JS, Burmolle M, Sorensen SJ. Antagonism correlates with metabolic similarity in diverse bacteria. Proc Natl Acad Sci USA. 2017;114:10684–8.
Google Scholar
Long RA, Rowley DC, Zamora E, Liu JY, Bartlett DH, Azam F. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol. 2005;71:8531–6.
Google Scholar
Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Wardenburg JB. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 2016;17:1281–91.
Google Scholar
Lopez-Igual R, Bernal-Bayard J, Rodriguez-Paton A, Ghigo JM, Mazel D. Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat Biotechnol. 2019;37:755–60.
Google Scholar
Koskella B. New approaches to characterizing bacteria-phage interactions in microbial communities and microbiomes. Environ Microbiol Rep. 2019;11:15–6.
Google Scholar
Soundararajan M, von Bunau R, Oelschlaeger TA. K5 Capsule and lipopolysaccharide are important in resistance to T4 phage attack in probiotic E. coli strain nissle 1917. Front Microbiol. 2019;10:2783.
Google Scholar
Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8.
Google Scholar
Marsh P, Wellington EMH. Phage-host interactions in soil. FEMS Microbiol Ecol. 1994;15:99–107.
Google Scholar
Balogh B, Jones JB, Iriarte FB, Momol MT. Phage therapy for plant disease control. Curr Pharm Biotechnol. 2010;11:48–57.
Google Scholar
Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol. 2012;22:1845–50.
Google Scholar
Piccardi P, Vessman B, Mitri S. Toxicity drives facilitation between 4 bacterial species. Proc Natl Acad Sci USA. 2019;116:15979–84.
Google Scholar
Pascual-Garcia A, Bonhoeffer S, Bell T. Metabolically cohesive microbial consortia and ecosystem functioning. Philos Trans R Soc B. 2020;375:20190245.
Google Scholar
Martinez-Harms MJ, Bryan BA, Balvanera P, Law EA, Rhodes JR, Possingham HP, et al. Making decisions for managing ecosystem services. Biol Conserv. 2015;184:229–38.
Google Scholar
Kildisheva OA, Dixon KW, Silveira FAO, Chapman T, Di Sacco A, Mondoni A, et al. Dormancy and germination: making every seed count in restoration. Restor Ecol. 2020;28:S256–S65.
Google Scholar
Maslo B, Handel SN, Pover T. Restoring beaches for Atlantic coast piping plovers (Charadrius melodus): a classification and regression tree analysis of nest-site selection. Restor Ecol. 2011;19:194–203.
Google Scholar
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
Google Scholar
Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in microbial ecology. ISME J. 2019;13:2647–55.
Google Scholar
Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, et al. Trophic downgrading of planet Earth. Science. 2011;333:301–6.
Google Scholar
Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219.
Google Scholar
Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.
Google Scholar
Trosvik P, de Muinck EJ. Ecology of bacteria in the human gastrointestinal tract-identification of keystone and foundation taxa. Microbiome. 2015;3:44.
Google Scholar
Kopp-Hoolihan L. Prophylactic and therapeutic uses of probiotics: a review. J Am Diet Assoc. 2001;101:229–41.
Google Scholar
Woo SL, Pepe O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1801.
Google Scholar
Wood-Charlson EM, Anubhav, Auberry D, Blanco H, Borkum MI, Corilo YE, et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat Rev Microbiol. 2020;18:313–4.
Google Scholar
Brussow H. Probiotics and prebiotics in clinical tests: an update. F1000Res. 2019;8:1157.
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.
Google Scholar
Weingarden AR, Chen C, Bobr A, Yao D, Lu YW, Nelson VM, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol. 2014;306:G310–G9.
Google Scholar
Hutchinson MI, Bell TAS, Gallegos-Graves L, Dunbar J, Albright M. Merging fungal and bacterial community profiles via an internal control. Microb Ecol. 2021; e-pub ahead of print 2021; https://doi.org/10.1007/s00248-020-01638-y.
Nayfach S, Roux S, Seshadri R. A genomic catalog of Earth’s micobiomes. Nat Biotechnol. 2021;39:499–509. al. e
Google Scholar
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.
Google Scholar
Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016;32:180.
Google Scholar
Henze M, Gujer W, Mino T, Van Loosdrecht MCM. Activated sludge models ASM1, ASM2, ASM2d and ASM, Vol 121. 2000. IWA Scientific and Technical Report 9, IWA publishing, London.
Orozco-Mosqueda MD, Rocha-Granados MD, Glick BR, Santoyo G. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res. 2018;208:25–31.
Google Scholar
Source: Ecology - nature.com