Muir, D. C. G. & Howard, P. H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40, 7157–7166 (2006).
Google Scholar
Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).
Google Scholar
Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).
Google Scholar
National Academy of Sciences Science and Decisions: Advancing Risk Assessment (National Academies, 2009); https://doi.org/10.17226/12209
Paustenbach, D. J., Panko, J. M., Scott, P. K. & Unice, K. M. A methodology for estimating human exposure to perfluorooctanoic acid (PFOA): a retrospective exposure assessment of a community (1951-2003). J. Toxicol. Environ. Health Pt A 70, 28–57 (2007).
Google Scholar
Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).
Google Scholar
Hopkins, Z. R., Sun, M., DeWitt, J. C. & Knappe, D. R. U. Recently detected drinking water contaminants: GenX and other per- and polyfluoroalkyl ether acids. J. Am. Water Works Assoc. 110, 13–28 (2018).
Google Scholar
Jarema, K. A., Hunter, D. L., Shaffer, R. M., Behl, M. & Padilla, S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol. Teratol. 52, 194–209 (2015).
Google Scholar
Weis, C. P. The value of alternatives assessment. Environ. Health Perspect. 124, A40 (2016).
Google Scholar
Jacobs, M. M., Malloy, T. F., Tickner, J. A. & Edwards, S. Alternatives assessment frameworks: research needs for the informed substitution of hazardous chemicals. Environ. Health Perspect. 124, 265–280 (2016).
Google Scholar
Sarigiannis, D. A. & Hansen, U. Considering the cumulative risk of mixtures of chemicals – a challenge for policy makers. Environ. Health 11(Suppl 1), S18 (2012).
Google Scholar
Von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018).
Google Scholar
Krasner, S. W. et al. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185 (2006).
Google Scholar
Richardson, S. D. & Plewa, M. J. To regulate or not to regulate? What to do with more toxic disinfection by-products? J. Environ. Chem. Eng. 8, 103939 (2020).
Google Scholar
Altenburger, R. et al. Mixture effects in samples of multiple contaminants—an inter-laboratory study with manifold bioassays. Environ. Int. 114, 95–106 (2018).
Google Scholar
Legler, J. et al. A novel in vivo bioassay for (xeno-)estrogens using transgenic zebrafish. Environ. Sci. Technol. 34, 4439–4444 (2000).
Google Scholar
Nelson, J., Bishay, F., van Roodselaar, A., Ikonomou, M. & Law, F. C. P. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Sci. Total Environ. 374, 80–90 (2007).
Google Scholar
Stalter, D., Magdeburg, A. & Oehlmann, J. Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water Res. 44, 2610–2620 (2010).
Google Scholar
Cao, N. et al. Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci. Total Environ. 407, 1588–1597 (2009).
Google Scholar
Neale, P. A. et al. Application of in vitro bioassays for water quality monitoring in three drinking water treatment plants using different treatment processes including biological treatment, nanofiltration and ozonation coupled with disinfection. Environ. Sci. Water Res. Technol. 6, 2444–2453 (2020).
Google Scholar
Escher, B. I. et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ. Sci. Technol. 48, 1940–1956 (2014).
Google Scholar
Conley, J. M. et al. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants. Sci. Total Environ. 579, 1610–1617 (2017).
Google Scholar
Medlock Kakaley, E. et al. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Sci. Total Environ. 768, 144750 (2021).
Google Scholar
Neale, P. A. & Escher, B. I. In vitro bioassays to assess drinking water quality. Curr. Opin. Environ. Sci. Health 7, 1–7 (2019).
Google Scholar
Alygizakis, N. A. et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ. Sci. Technol. 52, 5135–5144 (2018).
Google Scholar
Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures in our changing environment. Science 367, 388–392 (2020).
Google Scholar
Peter, K. T., Wu, C., Tian, Z. & Kolodziej, E. P. Application of nontarget high resolution mass spectrometry data to quantitative source apportionment. Environ. Sci. Technol. 53, 12257–12268 (2019).
Google Scholar
Schymanski, E. L. et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 407, 6237–6255 (2015).
Google Scholar
Williams, A. J. et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J. Cheminform. 9, 61 (2017).
Google Scholar
CompTox Chemicals Dashboard (US EPA, 2017); https://www.epa.gov/chemical-research/comptox-chemicals-dashboard
Dong, H., Cuthbertson, A. A. & Richardson, S. D. Effect-directed analysis (eda): a promising tool for nontarget identification of unknown disinfection byproducts in drinking water. Environ. Sci. Technol. 54, 1290–1292 (2020).
Google Scholar
Vughs, D., Baken, K. A., Kolkman, A., Martijn, A. J. & de Voogt, P. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment. Environ. Sci. Pollut. Res. 25, 3951–3964 (2018).
Google Scholar
Altenburger, R. et al. Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total Environ. 512–513, 540–551 (2015).
Google Scholar
Zwart, N. et al. High-throughput effect-directed analysis using downscaled in vitro reporter gene assays to identify endocrine disruptors in surface water. Environ. Sci. Technol. 52, 4367–4377 (2018).
Google Scholar
Brunner, A. M. et al. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci. Total Environ. 705, 135779 (2020).
Google Scholar
Raies, A. B. & Bajic, V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. WIREs Comput. Mol. Sci. 6, 147–172 (2016).
Google Scholar
New Approach Methods Work Plan (US EPA, 2020).
Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).
Google Scholar
Altenburger, R., Nendza, M. & Schüürmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 22, 1900–1915 (2003).
Google Scholar
Rider, C. V. & Ellen, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors (Springer, 2018); https://doi.org/10.1007/978-3-319-56234-6
Rabinowitz, J. R., Goldsmith, M. R., Little, S. B. & Pasquinelli, M. A. Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environ. Health Perspect. 116, 573–576 (2008).
Google Scholar
Kwiatkowski, C. F. et al. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 7, 532–543 (2020).
Google Scholar
Rosario-Ortiz, F. et al. How do you like your tap water? Science 351, 912–914 (2006).
Google Scholar
Kar, S. & Leszczynski, J. Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 7, 15 (2019).
Google Scholar
Crittenden, J. C. et al. Predicting GAC performance with rapid small-scale column tests. J. Am. Water Works Assoc. 83, 77–87 (1991).
Google Scholar
Topol, E. J. Individualized medicine from prewomb to tomb. Cell 157, 241–253 (2014).
Google Scholar
Ternes, T. A. et al. Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens. Environ. Sci. Technol. 51, 308–319 (2017).
Google Scholar
Leusch, F. D. L. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).
Google Scholar
Drewes, J. E., Hemming, J., Ladenburger, S. J., Schauer, J. & Sonzogni, W. An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ. Res. 77, 12–23 (2005).
Google Scholar
Dingemans, M. M. L., Baken, K. A., van der Oost, R., Schriks, M. & van Wezel, A. P. Risk-based approach in the revised European Union drinking water legislation: opportunities for bioanalytical tools. Integr. Environ. Assess. Manag. 15, 126–134 (2019).
Google Scholar
Escher, B. I. & Neale, P. A. Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays. Environ. Toxicol. Chem. 40, 487–499 (2021).
Google Scholar
Reemtsma, T. et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ. Sci. Technol. 50, 10308–10315 (2016).
Google Scholar
Brack, W. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal. Bioanal. Chem. 377, 397–407 (2003).
Google Scholar
Campos, B. & Colbourne, J. K. How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry. Environ. Toxicol. Chem. 37, 1252–1259 (2018).
Google Scholar
Zhen, H. et al. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio Rerio) liver cell-based metabolomics approach. Water Res. 145, 198–209 (2018).
Google Scholar
Xia, P. et al. Benchmarking water quality from wastewater to drinking waters using reduced transcriptome of human cells. Environ. Sci. Technol. 51, 9318–9326 (2017).
Google Scholar
Prasse, C. Reactivity-directed analysis-a novel approach for the identification of toxic organic electrophiles in drinking water. Environ. Sci. Process. Impacts 23, 48–65 (2021).
Google Scholar
Dodd, B. AB-1755 The Open and Transparent Water Data Act: Assembly Bill No. 1755 (California Legislative Information, 2016); https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160AB1755
Mons, B., Schultes, E., Liu, F. & Jacobsen, A. The FAIR principles: first generation implementation choices and challenges. Data Intell. 2, 1–9 (2020).
Google Scholar
National Research Council Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies, 2011).
Drinking Water and Public Health in the United States (American Public Health Association, 2019).
Allman, A., Daoutiis, P., Arnol, W. A. & Cussler, E. L. Efficient water pollution abatement. Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.9b03241 (2019).
A Working Approach for Identifying Potential Candidate Chemicals for Prioritization (US EPA, 2018).
Janesick, A. S. et al. On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens. Environ. Health Perspect. https://doi.org/10.1289/ehp.1510352 (2016).
Janesick, A. S., Dimastrogiovanni, G., Chamorro-Garcia, R. & Blumberg, B. Reply to “comment on ‘On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens’”. Environ. Health Perspect. https://doi.org/10.1289/EHP1122 (2017).
Houck, K. A. et al. Comment on “On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens”. Environ. Health Perspect. https://doi.org/10.1289/EHP881 (2017).
Molnar, C. et al. Pitfalls to avoid when interpreting machine learning models. Preprint at https://arxiv.org/abs/2007.04131 (2020).
Source: Resources - nature.com