EFSA. Effectiveness of in planta control measures for Xylella fastidiosa. EFSA J. 17(5). https://doi.org/10.2903/j.efsa.2019.5666 (2019).
Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27(1), 271–290. https://doi.org/10.1146/annurev.py.27.090189.001415 (1989).
Google Scholar
Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of Dna sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95(3), 668. https://doi.org/10.4454/JPP.V95I3.035 (2013).
Google Scholar
EPPO. Xylella fastidiosa in EPPO region. EPPO Bulletin. 49(2) (2019).
Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 8723. https://doi.org/10.1038/s41598-019-44997-4 (2019).
Google Scholar
Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in apulia: Where we stand. Phytopathology 109(2), 175–186. https://doi.org/10.1094/PHYTO-08-18-0319-FI (2019).
Google Scholar
Mannino, M. R. et al. Horizon scanning for plant health: Report on 2017–2020 activities. EFSA Support. Publ. https://doi.org/10.2903/sp.efsa.2021.EN-2010 (2021).
Google Scholar
EFSA. Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J. 13(1), 3989. https://doi.org/10.2903/j.efsa.2015.3989 (2015).
Cornara, D. et al. An overview on the worldwide vectors of Xylella fastidiosa. Entomol. Gen. 39(3–4), 157–181. https://doi.org/10.1127/entomologia/2019/0811 (2019).
Google Scholar
Finke, D. L. Contrasting the consumptive and non-consumptive cascading effects of natural enemies on vector-borne pathogens. Entomol. Exp. Appl. 144, 45–55. https://doi.org/10.1111/j.1570-7458.2012.01258.x (2012).
Google Scholar
Martini, X., Hoffmann, M., Coy, M. R., Stelinski, L. L. & Pelz-Stelinski, K. S. Infection of an insect vector with a bacterial plant pathogen increases its propensity for dispersal. PLoS ONE 10(6), 1–16. https://doi.org/10.1371/journal.pone.0129373 (2015).
Google Scholar
Almeida, R. P. P. et al. Addressing the new global threat of Xylella fastidiosa. Phytopathology 109(2), 172–174. https://doi.org/10.1094/PHYTO-12-18-0488-FI (2019).
Google Scholar
Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: When an old acquaintance becomes a new threat to European agriculture. J. Pest. Sci. 91(3), 957–972. https://doi.org/10.1007/s10340-018-0966-0 (2018).
Google Scholar
Halkka, O., Raatikainen, M., Vasarainen, A. & Heinonen, L. Ecology and ecological genetics of Philaenus spumarius (L.) (Homoptera). Ann. Zool. Fenn. 4, 1–18 (1967).
Lavigne, R. Biology of Philaenus leucophthalmus (L.) in Massachusetts. J. Econ. Entomol. 52(5), 904–907. https://doi.org/10.1093/jee/52.5.904 (1959).
Google Scholar
Ossiannilsson, F. The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 2: The families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae). Fauna Entomol. Scand. 7(2), 223–593 (1981).
Weaver, C. R. The seasonal behavior of meadow spittlebug and its relation to a control method. J. Econ. Entomol. 44(3), 350–353. https://doi.org/10.1093/jee/44.3.350 (1951).
Google Scholar
Weaver, C. R. & King, D. R. Meadow spittlebug, Philaenus leucophthalmus (L.). Research Bulletin; Ohio Agricultural Experiment Station. (ed. Wooster, OH, USA, 1954).
Drosopoulos, S. & Asche, M. Biosystematic studies on the spittlebug genus Philaenus with the description of a new species. Zool. J. Linn. Soc. 101(2), 169–177. https://doi.org/10.1111/j.1096-3642.1991.tb00891.x (2008).
Google Scholar
Grant, J. F., Lambdin, P. L. & Folium, R. A. Infestation levels and seasonal incidence of the meadow spittlebug (Homoptera: cercopidae) on musk thistle in Tennessee. J. Agric. Urban Entomol. 15, 83–91 (1998).
Halkka, O. Equilibrium populations of Philaenus spumarius L. Nature 193(4810), 93–94. https://doi.org/10.1038/193093a0 (1962).
Google Scholar
Freeman, J. A. Studies in the distribution of insects by Aerial currents. J. Anim. Ecol. 14, 128 (1945).
Google Scholar
Reynolds, D. R., Chapman, J. W. & Stewart, A. J. A. Windborne migration of Auchenorrhyncha (Hemiptera) over Britain. Eur. J. Entomol. 114, 554–564. https://doi.org/10.14411/eje.2017.070 (2017).
Google Scholar
Gutierrez, A. P., Nix, H. A., Havenstein, D. E. & Moore, P. A. The ecology of Aphis Craccivora Koch and subterranean clover stunt virus in south-east Australia. III. A regional perspective of the phenology and migration of the Cowpea Aphid. J. Appl. Ecol. 11(1), 21–35. https://doi.org/10.2307/2402002 (1974).
Google Scholar
Pienkowski, R. L. & Medler, J. T. Synoptic weather conditions associated with long-range movement of the potato leafhopper, Empoasca fabae, into Wisconsin. Ann. Entomol. Soc. Am. 57(5), 588–591. https://doi.org/10.1093/aesa/57.5.588 (1964).
Google Scholar
Drake, V. A. Radar observations of moths migrating in a nocturnal low-level jet. Ecol. Entomol. 10(3), 259–265. https://doi.org/10.1111/j.1365-2311.1985.tb00722.x (1985).
Google Scholar
Wallin, J. R. & Loonan, D. V. Low-level jet winds, aphid vectors, local weather, and barley yellow dwarf virus outbreaks. Phytopathology 61(9), 1068. https://doi.org/10.1094/PHYTO-61-1068 (1971).
Google Scholar
Sedlacek, J. D. & Freytag, P. H. Aspects of the field biology of the Blackfaced Leafhopper (Homoptera: Cicadellidae) in corn and pastures in Kentucky. J. Econ. Entomol. 79(3), 605–613. https://doi.org/10.1093/jee/79.3.605 (1986).
Google Scholar
Zhu, M., Radcliffe, E. B., Ragsdale, D. W., MacRae, I. V. & Seeley, M. W. Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains. Agric. For. Meteorol. 138(1–4), 192–202. https://doi.org/10.1016/j.agrformet.2006.05.001 (2006).
Google Scholar
Bodino, N. et al. Dispersal of Philaenus spumarius (Hemiptera: Aphrophoridae), a vector of Xylella fastidiosa, in olive grove and meadow agroecosystems. Environ. Entomol. https://doi.org/10.1093/ee/nvaa140 (2020).
Google Scholar
Lago, C. et al. Dispersal of Neophilaenus campestris, a vector of Xylella fastidiosa, from olive groves to over-summering hosts. J. Appl. Entomol. https://doi.org/10.1111/jen.12888 (2021).
Google Scholar
Minter, M. et al. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. Ecol. Entomol. 43(4), 397–411. https://doi.org/10.1111/een.12521 (2018).
Google Scholar
Ávalos-Masó, J. A., Martí-Campoy, A. & Soto, T. A. Study of the flying ability of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using a computer-monitored flight mill. Bull. Entomol. Res. 104(4), 462–470. https://doi.org/10.1017/S0007485314000121 (2014).
Google Scholar
Yu, E. Y., Gassmann, A. J. & Sappington, T. W. Using flight mills to measure flight propensity and performance of western corn rootworm, diabrotica virgifera virgifera (Leconte). J. Vis. Exp. 152, e59196. https://doi.org/10.3791/59196 (2019).
Google Scholar
Riley, J. R., Downham, M. C. A. & Cooter, R. J. Comparison of the performance of Cicadulina leafhoppers on flight mills with that to be expected in free flight. Entomol. Exp. Appl. 83(3), 317–322. https://doi.org/10.1046/j.1570-7458.1997.00186.x (1997).
Google Scholar
Zhang, Y., Wang, L., Wu, K., Wyckhuys, K. A. G. & Heimpel, G. E. Flight performance of the Soybean Aphid, Aphis glycines (Hemiptera: Aphididae) under different temperature and humidity regimens. Environ. Entomol. 37(2), 301–306. https://doi.org/10.1603/0046-225X(2008)37[301:FPOTSA]2.0.CO;2 (2008).
Google Scholar
Cheng, Y., Luo, L., Jiang, X. & Sappington, T. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet. PLoS ONE https://doi.org/10.1371/journal.pone.0031562 (2012).
Google Scholar
Jones, C. M. et al. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Mol. Ecol. 24(19), 4901–4911. https://doi.org/10.1111/mec.13362 (2015).
Google Scholar
White, S. M., Bullock, J. M., Hooftman, D. A. P. & Chapman, D. S. Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biol. Invasions 19(6), 1825–1837. https://doi.org/10.1007/s10530-017-1393-5 (2017).
Google Scholar
Jones, V. P., Naranjo, S. E. & Smith, T. J. Insect ecology and behavior: Laboratory flight mill studies. Accessed 22 July 2021. (2010). http://entomology.tfrec.wsu.edu/VPJ_Lab/Flight-Mill
Martí-Campoy, A. et al. Design of a computerised flight mill device to measure the flight potential of different insects. Sensors (Switzerland) 16(4), 485. https://doi.org/10.3390/s16040485 (2016).
Google Scholar
Kees, A. M., Hefty, A. R., Venette, R. C., Seybold, S. J. & Aukema, B. H. Flight capacity of the walnut twig beetle (coleoptera: Scolytidae) on a laboratory flight mill. Environ. Entomol. 46(3), 633–641. https://doi.org/10.1093/ee/nvx055 (2017).
Google Scholar
Morente, M. et al. Distribution and relative abundance of insect vectors of Xylella fastidiosa in olive groves of the Iberian peninsula. Insects 9(4), 175. https://doi.org/10.3390/insects9040175 (2018).
Google Scholar
Morente, M., Cornara, D., Moreno, A. & Fereres, A. Continuous indoor rearing of Philaenus spumarius, the main European vector of Xylella fastidiosa. J. Appl. Entomol. 142(9), 901–904. https://doi.org/10.1111/jen.12553 (2018).
Google Scholar
Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model Selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).
Google Scholar
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (ed. Springer Sci. Bus. Media, 2009).
Strona, G., Carstens, C. J. & Beck, P. S. A. Network analysis reveals why Xylella fastidiosa will persist in Europe. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-00077-z (2017).
Google Scholar
Whittaker, J. B. Density regulation in a population of Philaenus spumarius (L.) (Homoptera: Cercopidae). J. Anim. Ecol. 42(1), 163–172. https://doi.org/10.2307/3410 (1973).
Google Scholar
Wiman, N. G., Walton, V. M., Shearer, P. W., Rondon, S. I. & Lee, J. C. Factors affecting flight capacity of brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). J. Pest Sci. 88(1), 37–47. https://doi.org/10.1007/s10340-014-0582-6 (2015).
Google Scholar
Strona, G. et al. Small world in the real world: Long distance dispersal governs epidemic dynamics in agricultural landscapes. Epidemics 30, 100384. https://doi.org/10.1016/j.epidem.2020.100384 (2020).
Google Scholar
Irwin, M. E. & Tresh, J. M. Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philos. Trans. R. Soc. London. B Biol. Sci. 321(1207), 421–446. https://doi.org/10.1098/rstb.1988.0101 (1988).
Google Scholar
Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18(3), 287–302. https://doi.org/10.1111/ele.12407 (2015).
Google Scholar
Fereres, A., Irwin, M. E. & Kampmeier, G. E. Aphid movement: Process and consecuences. in Aphids as crop pests. (ed.2 Emden, H. F. van, Harrington, R.). 196–224. https://doi.org/10.1079/9781780647098.0196 (CABI Publishing, 2017).
Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Levy flight. PNAS 108, 8704–8707. https://doi.org/10.1073/pnas.1015208108 (2011).
Google Scholar
Okano, K. Sublethal effects of a neonicotinoid insecticide on the sharpshooter vectors of Xylella fastidiosa. Doctoral dissertation (UC Berkeley, 2009).
Robinet, C., David, G. & Jactel, H. Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecol. Modell. 402, 85–92. https://doi.org/10.1016/j.ecolmodel.2019.04.006 (2019).
Google Scholar
Taylor, R. A. J., Bauer, L. S., Poland, T. M. & Windell, K. N. Flight performance of agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J. Insect Behav. 23(2), 128–148. https://doi.org/10.1007/s10905-010-9202-3 (2010).
Google Scholar
Srygley, R. B. & Lorch, P. D. Coping with uncertainty: Nutrient deficiencies motivate insect migration at a cost to immunity. Integr. Comp. Biol. 53, 1002–1013. https://doi.org/10.1093/icb/ict047 (2013).
Google Scholar
Nilakhe, S. S. & Buainain, C. M. Observations on movement of spittlebug adults. Pesqui. Agropecuária Bras. Brasília 23, 123–134 (1988).
Neuman-Lee, L. A., Hopkins, G. R., Brodie, E. D. & French, S. S. Sublethal contaminant exposure alters behavior in a common insect: Important implications for trophic transfer. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Wastes 48(6), 442–448. https://doi.org/10.1080/03601234.2013.761839 (2013).
Google Scholar
Wilson, D. M. The central nervous control of flight in a locust. J. Exp. Biol. 38(2), 471–490 (1961).
Google Scholar
Yamanaka, T., Tatsuki, S. & Shimada, M. Flight characteristics and dispersal patterns of fall webworm (Lepidoptera: Arctiidae) males. Environ. Entomol. 30(6), 1150–1157. https://doi.org/10.1603/0046-225X-30.6.1150 (2001).
Google Scholar
Blackmer, J. L., Hagler, J. R., Simmons, G. S. & Henneberry, T. J. Dispersal of Homalodisca vitripennis (Homoptera: Cicacellidae) from a point release site in citrus. Environ. Entomol. 35(6), 1617–1625. https://doi.org/10.1093/ee/35.6.1617 (2006).
Google Scholar
Bodino, N. et al. Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy. Sci. Rep. 9(1), 1–17. https://doi.org/10.1038/s41598-019-54279-8 (2019).
Google Scholar
Minuz, R. L., Isidoro, N., Casavecchia, S., Burgio, G. & Riolo, P. Sex-dispersal differences of four phloem-feeding vectors and their relationship to wild-plant abundance in vineyard agroecosystems. J. Econ. Entomol. 106(6), 2296–2309. https://doi.org/10.1603/ec13244 (2013).
Google Scholar
Waloff, N. Dispersal by flight of leafhoppers (Auchenorrhyncha: Homoptera). J. Appl. Ecol. 10, 705 (1973).
Google Scholar
Johnson, C. G. Physiological factors in insect migration by flight. Nature 198(4879), 423–427. https://doi.org/10.1038/198423a0 (1963).
Google Scholar
Drake, V. A. & Gatehouse, A. G. Insect Migration. Tracking Resources through Space and Time. (ed. Cambridge University Press). 7(3) Cambridge UK. https://doi.org/10.1007/s10841-006-9039-4 (1995).
Sappington, T. W. & Showers, W. B. Reproductive maturity, mating status, and long-duration flight behavior of agrotis ipsilon (Lepidoptera: Noctuidae) and the conceptual misuse of the oogenesis flight syndrome by entomologists. Environ. Entomol. 21(4), 677–688. https://doi.org/10.1093/ee/21.4.677 (1992).
Google Scholar
Zhao, X. C. et al. Does the onset of sexual maturation terminate the expression of migratory behaviour in moths? A study of the oriental armyworm, Mythimna separata. J Insect Physiol. 55(11), 1039–432009. https://doi.org/10.1016/j.jinsphys.2009.07.007 (2009).
Google Scholar
Tigreros, N. & Davidowitz, G. Flight-fecundity tradeoffs in wing-monomorphic insects. Adv. Insect Phys. 56, 1–41. https://doi.org/10.1016/bs.aiip.2019.02.001 (2019).
Google Scholar
Drake, V. A. & Farrow, R. A. The influence of atmospheric structure and motions on insect migration. Ann. Rev. Entomol. 33(1), 183–210. https://doi.org/10.1146/annurev.en.33.010188.001151 (1988).
Google Scholar
Burt, P. J. A. & Pedgley, D. E. Nocturnal insect migration: Effects of local winds. Adv. Ecol. Res. 27, 61–92. https://doi.org/10.1016/S0065-2504(08)60006-9 (1997).
Google Scholar
Gordh, G. & McKirdy, S. The Handbook of Plant Biosecurity (Springer, 2014). https://doi.org/10.1007/978-94-007-7365-3
Google Scholar
Source: Ecology - nature.com