in

Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso

  • 1.

    Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000363.pub2 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Pluess, B. et al. Indoor residual spraying for preventing malaria (Review). Cochrane Rev. https://doi.org/10.1002/14651858.CD006657.pub2 (2010).

    Article 

    Google Scholar 

  • 3.

    WHO. Guidelines for malaria vector control. (World Health Organization, 2019). https://www.who.int/malaria/publications/atoz/9789241550499/en/. Accessed 08 Sept 2019.

  • 4.

    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572), 207–211 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Killeen, G. F. et al. Made-to-measure malaria vector control strategies: Rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar. J. 13(1), 146 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Waite, J. L. et al. Increasing the potential for malaria elimination by targeting zoophilic vectors. Sci. Rep. 7, 40551 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Cooke, M. K. et al. A bite before bed’: Exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar. J. 14(1), 259 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Milali, M. P., Sikulu-Lord, M. T. & Govella, N. J. Bites before and after bedtime can carry a high risk of human malaria infection. Malar. J. 16(1), 91 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Pates, H. et al. Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory. Bull. Entomol. Res. 91(4), 289–296 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Costantini, C. et al. Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. Am. J. Trop. Med. Hyg. 58(1), 56–63 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Gillies, M. T. & DeMeillon, B. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region) (South African Institute for Medical Research, 1968).

    Google Scholar 

  • 12.

    Hamon, J. Les moustiques anthropophiles de la région de Bobo-Dioulasso (République de Haute-Volta): Cycles d’agressivité et variations saisonnières. Ann. Soc. Entomol. (1963).

  • 13.

    Nyarango, P. M. et al. A steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004: the effect of combination of control methods. Malar. J. 5(1), 33 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    WHO, World malaria report 2019, in Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019. Accessed 17 Dec 2019.

  • 15.

    Hancock, P. A. et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. 18(6), e3000633 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol. Biol. 7(2), 179–184 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 113(33), 9268–9273 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Edi, C. V. et al. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PloS Genet 10(3), e1004236 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Kreppel, K. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10(1), 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Moiroux, N. et al. Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS ONE 9, e104967 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Reddy, M. R. et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar. J. 10(1), 184–184 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Rozendaal, J. et al. Behavioral responses of Anopheles darlingi in Suriname to DDT residues on house walls. J. Am. Mosq. Control Assoc. 5(3), 339–350 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Mwangangi, J. M. et al. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar. J. 12(1), 1 (2013).

    Article 

    Google Scholar 

  • 24.

    Sougoufara, S. et al. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30(3), 365–368 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Moiroux, N. et al. Changes in Anopheles funestus biting behaviour following universal coverage of long-lasting insecticidal nets in Benin. J. Infect. Dis. 206, 1622–1629 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Matowo, N. S. et al. Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: A report on design and field evaluation of the Mosquito Landing Box. Parasit. Vectors 6(1), 1–16 (2013).

    Article 

    Google Scholar 

  • 27.

    Russell, T. L. et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 10, 1 (2011).

    Article 

    Google Scholar 

  • 28.

    Sherrard-Smith, E. et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc. Natl. Acad. Sci. 116(30), 15086–15095 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar. J. 18(1), 311 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Bayili, K. et al. Evaluation of efficacy of Interceptor (R) G2, a long-lasting insecticide net coated with a mixture of chlorfenapyr and alpha-cypermethrin, against pyrethroid resistant Anopheles gambiae s.l. in Burkina Faso. Malar. J. 16, 9 (2017).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Oumbouke, W. A. et al. Evaluation of an alpha-cypermethrin + PBO mixture long-lasting insecticidal net VEERALIN® LN against pyrethroid resistant Anopheles gambiae s.s.: an experimental hut trial in M’bé, central Côte d’Ivoire. Parasit. Vectors 12(1), 544 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Yaro, J. B. et al. A cohort study to identify risk factors for Plasmodium falciparum infection in Burkinabe children: Implications for other high burden high impact countries. Malar. J. 19(1), 371 (2020).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Dabire, K. et al. Anopheles funestus (Diptera: Culicidae) in a humid savannah area of western Burkina Faso: Bionomics, insecticide resistance status, and role in malaria transmission. J. Med. Entomol. 44(6), 990–997 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Badolo, A. et al. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: Resistance on the rise?. Malar. J. 11(1), 1 (2012).

    Article 

    Google Scholar 

  • 35.

    Hamon, J. et al. Présence dans le Sud-Ouest de la Haute-Volta d’une Population d’Anopheles gambiae” A” résistante au DDT (Organisation mondiale de la Santé, 1968).

    Google Scholar 

  • 36.

    Hamon, J. et al. Présence dans le Sud-Ouest de la Haute-Volta de populations d’Anopheles funestus Giles résistantes à la dieldrine. Med. Trop. 28(2), 222–226 (1968).

    Google Scholar 

  • 37.

    Toe, H. Characterisation of Insecticide Resistance in Anopheles gambiae from Burkina Faso and Its Impact on Current Malaria Control Strategies (University of Liverpool, 2015).

    Google Scholar 

  • 38.

    Namountougou, M. et al. Insecticide resistance mechanisms in Anopheles gambiae complex populations from Burkina Faso, West Africa. Acta Trop. 197, 105054 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Toe, K. H. et al. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg. Infect. Dis. 20, 10 (2014).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Beier, J. C., Killeen, G. & Githure, J. I. Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am. J. Trop. Med. Hyg. 61, 109–113 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Smith, D. L. et al. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438, 492–495 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Killeen, G. F. et al. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect. Dis. 6, 161 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Huho, B. et al. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int. J. Epidemiol. 42(1), 235 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Robert, V. & Carnevale, P. Influence of deltamethrin treatment of bed nets on malaria transmission in the Kou valley, Burkina Faso. Bull. World Health Organ. 69(6), 735 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Dabire, K. et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J. Vector Ecol. 33(1), 70–75 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Epopa, P. S. et al. Seasonal malaria vector and transmission dynamics in western Burkina Faso. Malar. J. 18(1), 113 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Dambach, P. et al. Nightly biting cycles of anopheles species in rural northwestern Burkina Faso. J. Med. Entomol. 55(4), 1027–1034 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Guglielmo, F. et al. Quantifying variation in exposure risk to mosquito bites at the individual level in Burkina Faso. Malar. J. (2020)

  • 49.

    Edi, C. A. et al. Long-term trends in Anopheles gambiae insecticide resistance in Côte d’Ivoire. Parasit. Vectors 7(1), 500 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Fuseini, G. et al. Evaluation of the residual effectiveness of Fludora fusion WP-SB, a combination of clothianidin and deltamethrin, for the control of pyrethroid-resistant malaria vectors on Bioko Island, Equatorial Guinea. Acta Trop. 196, 42–47 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Rongsriyam, Y. & Busvine, J. Cross-resistance in DDT-resistant strains of various mosquitoes (Diptera, Culicidae). Bull. Entomol. Res. 65(3), 459–471 (1975).

    Article 

    Google Scholar 

  • 52.

    Chandre, F. et al. Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull. World Health Organ. 77(3), 230–234 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Bagi, J. et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar. J. 14(1), 210 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Robert, V., et al., Etude des taux de parturité et d’infection du complexe Anopheles gambiae dans la rizière de la vallée du Kou, Burkina Faso. Le paludisme en Afrique de l’Ouest, 1991: p. 17.

  • 55.

    Pombi, M. et al. The Sticky Resting Box, a new tool for studying resting behaviour of Afrotropical malaria vectors. Parasit. Vectors 7(1), 247 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Gnémé, A. et al. Anopheline occurrence and the risk of urban malaria in the city of Ouagadougou, Burkina Faso. (2019).

  • 57.

    Akogbéto, M. C. et al. Blood feeding behaviour comparison and contribution of Anopheles coluzzii and Anopheles gambiae, two sibling species living in sympatry, to malaria transmission in Alibori and Donga region, northern Benin, West Africa. Malar. J. 17(1), 307 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Wamae, P. M. et al. Early biting of the Anopheles gambiae s.s. and its challenges to vector control using insecticide treated nets in western Kenya highlands. Acta Trop. 150, 136–142 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Gillies, M. Age-groups and the biting cycle in Anopheles gambiae: A preliminary investigation. Bull. Entomol. Res. 48(3), 553–559 (1957).

    Article 

    Google Scholar 

  • 60.

    Bayoh, M. et al. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit. Vectors 7, 380 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Sougoufara, S. et al. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: A new challenge to malaria elimination. Malar. J. 13, 125 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Meyers, J. I. et al. Increasing outdoor host-seeking in Anopheles gambiae over 6 years of vector control on Bioko Island. Malar. J. 15(1), 1 (2016).

    MathSciNet 
    Article 

    Google Scholar 

  • 63.

    Bayoh, M. N. et al. Anopheles gambiae: Historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar. J. 9(1), 62 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Chinula, D. et al. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: An observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit. Vectors 11(1), 544 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Main, B. J. et al. The genetic basis of host choice and resting behavior in the major African malaria vector Anopheles arabiensis. BioRxiv 2016, 044701 (2016).

    Google Scholar 

  • 66.

    Coluzzi, M. et al. Behavioral divergences between mosquitos with different inversion karyotypes in polymorphic populations of Anopheles gambiae complex. Nature 266, 832–833 (1977).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Elanga-Ndille, E. et al. The G119S Acetylcholinesterase (Ace-1) target site mutation confers carbamate resistance in the major malaria vector Anopheles gambiae from cameroon: A challenge for the coming IRS implementation. Genes 10(10), 790 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Toé, K. H. et al. The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families. BMC Genomics 16(1), 146 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Finda, M. F. et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE 14(6), e0217414 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    INSD. Annuaire sttistique 2018 Burkina Faso: Institut national de la statistique et de la démographie (2019).

  • 71.

    QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. (2021).

  • 72.

    OpenStreetMap. OpenStreetMap contributors. https://www.openstreetmap.org. (2021).

  • 73.

    Benedict, M. Q. Care and maintenance of anopheline mosquito colonies. In The Molecular Biology of Insect Disease Vectors 3–12 (Springer, 1997).

    Chapter 

    Google Scholar 

  • 74.

    WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes: 2nd edition. (World Health Organization, 2016). http://www.who.int/malaria.

  • 75.

    WHO. Supplies for Monitoring Insecticide Resistance in Disease Vectors. (World Health Organization: Parasitic Diseases and Vector Control (PVC)/Communicable Disease Control, Prevention and Eradication (CPE), 2001).

  • 76.

    M.W. Service. Mosquito Ecology Field Sampling Methods (Elsevier Science Publishers, 1993).

    Book 

    Google Scholar 

  • 77.

    Kreppel, K. S. et al. Comparative evaluation of the Sticky-Resting-Box-Trap, the standardised resting-bucket-trap and indoor aspiration for sampling malaria vectors. Parasit. Vectors 8(1), 1–5 (2015).

    Article 

    Google Scholar 

  • 78.

    Gillies, M. & Coetzee, M. A Supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). (1987).

  • 79.

    Fanello, C., Santolamazza, F. D. & DellaTorre, A. Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medi. Vet. Entomol. 16(4), 461–464 (2002).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Sanou, A. et al. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar. J. 18(1), 386 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Wirtz, R. et al. ELISA method for detecting Plasmodium falciparum circumsporozoite antibody. Bull. World Health Organ. 67(5), 535 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    WHO. Manual on Practical Entomology in Malaria. Part II. Methods and Techniques. 84–85 (WHO Division of Malaria and other Parasitic Diseases, 1975).

  • 83.

    Garrett-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull. World Health Organ. 30(2), 241 (1964).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Beier, J. C. et al. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. J. Med. Entomol. 25(1), 9–16 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Kiszewski, A. et al. A global index representing the stability of malaria transmission. Am. J. Trop. Med. Hyg. 70(5), 486–498 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Team, R.C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.

  • 87.

    Wood, S. & Wood, M.S. The mgcv package. https://www.R-project.org/ (2007).

  • 88.

    Bates, D. et al. Fitting linear mixed-effects models using lme4. http://arxiv.org/abs/1406.5823 (2014).


  • Source: Ecology - nature.com

    How deregulation, drought and increasing fire impact Amazonian biodiversity

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies