in

Global topographic uplift has elevated speciation in mammals and birds over the last 3 million years

  • 1.

    von Humboldt, A. Ansichten der Natur mit Wissenschaftlichen Erlauterungen (J.G. Cotta, 1808).

  • 2.

    Perrigo, A., Hoorn, C. & Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 47, 315–325 (2020).

    Article 

    Google Scholar 

  • 3.

    Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).

    Article 

    Google Scholar 

  • 6.

    Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

    Article 

    Google Scholar 

  • 7.

    Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 10334–10339 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc. Natl Acad. Sci. USA 102, 140–145 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl Acad. Sci. USA 90, 4087–4091 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).

    Article 

    Google Scholar 

  • 13.

    Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Igea, J. & Tanentzap, A. J. Angiosperm speciation cools down in the tropics. Ecol. Lett. 23, 692–700 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Schluter, D. Speciation, ecological opportunity, and latitude (American Society of Naturalists address). Am. Nat. 187, 1–18 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Anderson, K. J. & Jetz, W. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 8, 310–318 (2005).

    Article 

    Google Scholar 

  • 18.

    Clarke, A. & Gaston, K. J. Climate, energy and diversity. Proc. R. Soc. B 273, 2257–2266 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Dowle, E. J., Morgan-Richards, M. & Trewick, S. A. Molecular evolution and the latitudinal biodiversity gradient. Heredity 110, 501–510 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article 

    Google Scholar 

  • 22.

    Boucher-Lalonde, V. & Currie, D. J. Spatial autocorrelation can generate stronger correlations between range size and climatic niches than the biological signal — a demonstration using bird and mammal range maps. PLoS One 11, e0166243 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Cutter, A. D. & Gray, J. C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70, 2171–2185 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Morales‐Barbero, J., Martinez, P. A., Ferrer‐Castán, D. & Olalla‐Tárraga, M. Á. Quaternary refugia are associated with higher speciation rates in mammalian faunas of the Western Palaearctic. Ecography 41, 607–621 (2018).

    Article 

    Google Scholar 

  • 25.

    Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444–E3451 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Testo, W. L., Sessa, E. & Barrington, D. S. The rise of the Andes promoted rapid diversification in Neotropical Phlegmariurus (Lycopodiaceae). New Phytol. 222, 604–613 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Dowsett, H. et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate 12, 1519–1538 (2016).

    Google Scholar 

  • 29.

    Hartley, A. J. Andean uplift and climate change. J. Geol. Soc. 160, 7–10 (2003).

    Article 

    Google Scholar 

  • 30.

    Aron, P. G. & Poulsen, C. J. in Mountains, Climate and Biodiversity (eds Hoorn, C., Perrugi, A. & Antonelli, A.) Ch. 8 (2018).

  • 31.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Wallis, G. P., Waters, J. M., Upton, P. & Craw, D. Transverse Alpine speciation driven by glaciation. Trends Ecol. Evol. 31, 916–926 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Luebert, F. & Muller, L. A. H. Effects of mountain formation and uplift on biological diversity. Front. Genet. 6, 54 (2015).

  • 34.

    Huang, S., Meijers, M. J. M., Eyres, A., Mulch, A. & Fritz, S. A. Unravelling the history of biodiversity in mountain ranges through integrating geology and biogeography. J. Biogeogr. 46, 1777–1791 (2019).

    Article 

    Google Scholar 

  • 35.

    Whittaker, R. J., Triantis, K. A. & Ladle, R. J. A general dynamic theory of oceanic island biogeography. J. Biogeogr. 35, 977–994 (2008).

    Article 

    Google Scholar 

  • 36.

    Li, Y. et al. Climate and topography explain range sizes of terrestrial vertebrates. Nat. Clim. Change 6, 498–502 (2016).

    Article 

    Google Scholar 

  • 37.

    Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).

    Article 

    Google Scholar 

  • 39.

    Rowley, D. B. & Garzione, C. N. Stable isotope-based paleoaltimetry. Annu. Rev. Earth Planet. Sci. 35, 463–508 (2007).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Mulch, A. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet. Sci. Lett. 433, 180–191 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Kuhn, T. S., Mooers, A. Ø. & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evol. 2, 427–436 (2011).

    Article 

    Google Scholar 

  • 42.

    Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).

  • 43.

    Meredith, R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on mammal diversification. Science 334, 521–524 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Redding, D. W. & Mooers, A. Ø. Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 20, 1670–1678 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 9, e89543 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Meyer, A. L. S., Román-Palacios, C. & Wiens, J. J. BAMM gives misleading rate estimates in simulated and empirical datasets. Evolution 72, 2257–2266 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Mitchell, J. S., Etienne, R. S. & Rabosky, D. L. Inferring diversification rate variation from phylogenies with fossils. Syst. Biol. 68, 1–18 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).

    Article 

    Google Scholar 

  • 55.

    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Amante, C. & Eakins, B. W. ETOPO1 Arc-minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (NOAA, 2009).

  • 57.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 58.

    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • 60.

    Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, v063i18 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    How deregulation, drought and increasing fire impact Amazonian biodiversity

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies