Lalli, C. & Parsons, T. R. Biological Oceanography: An Introduction (Elsevier, 1997).
Mackas, D. L., Denman, K. L. & Abbott, M. R. Plankton patchiness: Biology in the physical vernacular. Bull. Mar. Sci. 37, 652–674 (1985).
Kjerfve, B. & Magill, K. E. Geographic and hydrodynamic characteristics of shallow coastal lagoons. Mar. Geol. 88, 187–199 (1989).
Google Scholar
Kjerfve, B. Chapter 1, Coastal lagoons. In Elsevier Oceanography Series Vol. 60 (ed. Kjerfve, B.) 1–8 (Elsevier, 1994).
McManus, M. A. & Woodson, C. B. Plankton distribution and ocean dispersal. J. Exp. Biol. 215, 1008–1016 (2012).
Google Scholar
Carr, M.-E. Estimation of potential productivity in Eastern Boundary Currents using remote sensing. Deep Sea Res. Part II 49, 59–80 (2001).
Google Scholar
Chavez, F. P. & Messié, M. A comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 83, 80–96 (2009).
Google Scholar
Schubert, H. & Telesh, I. Estuaries and coastal lagoons. In Biological Oceanography of the Baltic Sea (eds Snoeijs-Leijonmalm, P. et al.) 483–509 (Springer Netherlands, 2017). https://doi.org/10.1007/978-94-007-0668-2_13.
Google Scholar
Pecqueur, D. et al. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673, 13–27 (2011).
Google Scholar
Deininger, A. et al. Simulated terrestrial runoff triggered a phytoplankton succession and changed seston stoichiometry in coastal lagoon mesocosms. Mar. Environ. Res. 119, 40–50 (2016).
Google Scholar
Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuar. Coast. Shelf Sci. 57, 73–85 (2003).
Google Scholar
Huang, J., Gao, J. & Hörmann, G. Hydrodynamic-phytoplankton model for short-term forecasts of phytoplankton in Lake Taihu, China. Limnologica 42, 7–18 (2012).
Google Scholar
Pérez-Ruzafa, A. et al. Connectivity between coastal lagoons and sea: Asymmetrical effects on assemblages’ and populations’ structure. Estuar. Coast. Shelf Sci. 216, 171–186 (2019).
Google Scholar
Dube, A., Jayaraman, G. & Rani, R. Modelling the effects of variable salinity on the temporal distribution of plankton in shallow coastal lagoons. J. Hydro-environ. Res. 4, 199–209 (2010).
Google Scholar
Pulina, S., Satta, C. T., Padedda, B. M., Sechi, N. & Lugliè, A. Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons. Estuar. Coast. Shelf Sci. 212, 95–104 (2018).
Google Scholar
Millet, B. & Cecchi, P. Wind-induced hydrodynamic control of the phytoplankton biomass in a lagoon ecosystem. Limnol. Oceanogr. 37, 140–146 (1992).
Google Scholar
Souchu, P. et al. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Mar. Ecol. Prog. Ser. 218, 141–152 (2001).
Google Scholar
Paphitis, D. & Collins, M. B. Sediment resuspension events within the (microtidal) coastal waters of Thermaikos Gulf, northern Greece. Cont. Shelf Res. 25, 2350–2365 (2005).
Google Scholar
Trombetta, T. et al. Water temperature drives phytoplankton blooms in coastal waters. PLoS One 14, e0214933 (2019).
Google Scholar
Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
Google Scholar
Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).
Google Scholar
Trombetta, T., Vidussi, F., Roques, C., Scotti, M. & Mostajir, B. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade. Front. Microbiol. 11, 502336 (2020).
Google Scholar
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).
Google Scholar
Hemraj, D. A., Hossain, A., Ye, Q., Qin, J. G. & Leterme, S. C. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation. Sci. Rep. 7, 44441 (2017).
Google Scholar
Bec, B., Husseini Ratrema, J., Collos, Y., Souchu, P. & Vaquer, A. Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: Emphasis on the picoeukaryote community. J. Plankton Res. 27, 881–894 (2005).
Google Scholar
Collos, Y. et al. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J. Sea Res. 61, 68–75 (2009).
Google Scholar
Collos, Y. et al. Pheopigment dynamics, zooplankton grazing rates and the autumnal ammonium peak in a Mediterranean lagoon. Hydrobiologia 550(1), 83–93 (2005).
Google Scholar
Gangnery, A. et al. Growth model of the Pacific oyster, Crassostrea gigas, cultured in Thau Lagoon (Méditerranée, France). Aquaculture 215, 267–290 (2003).
Google Scholar
Pernet, F. et al. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J. Sea Res. 68, 20–32 (2012).
Google Scholar
Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895 (2007).
Google Scholar
Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226 (2011).
Google Scholar
Jones, K. J. & Gowen, R. J. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuar. Coast. Shelf Sci. 30, 557–567 (1990).
Google Scholar
Bosak, S., Godrijan, J. & Šilović, T. Dynamics of the marine planktonic diatom family Chaetocerotaceae in a Mediterranean coastal zone. Estuar. Coast. Shelf Sci. 180, 69–81 (2016).
Google Scholar
Wagner, C. & Adrian, R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: A matter of temporal scale. Freshw. Biol. 56, 1949–1961 (2011).
Google Scholar
Rynearson, T. A., Flickinger, S. A. & Fontaine, D. N. Metabarcoding reveals temporal patterns of community composition and realized thermal niches of Thalassiosira spp. (Bacillariophyceae) from the Narragansett Bay long-term plankton time series. Biology 9, 19 (2020).
Google Scholar
Delaney, M. P. Effects of temperature and turbulence on the predator–prey interactions between a heterotrophic flagellate and a marine bacterium. Microb. Ecol. 45, 218–225 (2003).
Google Scholar
Peter, K. H. & Sommer, U. Phytoplankton cell size: Intra- and interspecific effects of warming and grazing. PLoS One 7, e49632 (2012).
Google Scholar
van Donk, E. & Kilham, S. S. Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol. 26, 40–50 (1990).
Google Scholar
Stelzer, C.-P. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? In Rotifera VIII: A Comparative Approach (eds Wurdak, E. et al.) 349–353 (Springer Netherlands, 1998).
Google Scholar
Arandia-Gorostidi, N., Weber, P. K., Alonso-Sáez, L., Morán, X. A. G. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME 11, 641–650 (2017).
Google Scholar
Peacock, E. E., Olson, R. J. & Sosik, H. M. Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Mar. Ecol. Prog. Sci. 503, 1–10 (2014).
Google Scholar
Käse, L. et al. Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them?. PLoS One 16, e0244817 (2021).
Google Scholar
Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M. & Shalapyonok, L. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep Sea Res. Part II 47, 3249–3272 (2000).
Google Scholar
Vidussi, F. et al. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol. Oceanogr. 56, 206–218 (2011).
Google Scholar
Balas, L. & Özhan, E. Three-dimensional modelling of stratified coastal waters. Estuar. Coast. Shelf Sci. 54, 75–87 (2002).
Google Scholar
Dalu, T., Richoux, N. B. & Froneman, P. W. Distribution of benthic diatom communities in a permanently open temperate estuary in relation to physico-chemical variables. S. Afr. J. Bot. 107, 31–38 (2016).
Google Scholar
Sommer, U., Peter, K. H., Genitsaris, S. & Moustaka-Gouni, M. Do marine phytoplankton follow Bergmann’s rule sensu lato?. Biol. Rev. 92, 1011–1026 (2017).
Google Scholar
Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge University Press, 1994).
Google Scholar
Litchman, E., de TezanosPinto, P., Klausmeier, C. A., Thomas, M. K. & Yoshiyama, K. Linking traits to species diversity and community structure in phytoplankton. In Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems (eds Naselli-Flores, L. & Rossetti, G.) 15–28 (Springer Netherlands, 2010).
Google Scholar
Unrein, F., Gasol, J. M., Not, F., Forn, I. & Massana, R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME 8, 164–176 (2014).
Google Scholar
Polimene, L. et al. Modelling a light-driven phytoplankton succession. J. Plankton Res. 36, 214–229 (2014).
Google Scholar
Hatzaki, M. et al. Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. J. Clim. 27, 9272–9289 (2014).
Google Scholar
Mostajir, B. et al. Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol. Oceanogr. 44, 586–596 (1999).
Google Scholar
Lacuna, D. G. & Uye, S.-I. Influence of mid-ultraviolet (UVB) radiation on the physiology of the marine planktonic copepod Acartia omorii and the potential role of photoreactivation. J. Plankton Res. 23, 143–156 (2001).
Google Scholar
Halac, S. et al. An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. J. Plankton Res. 19, 1671–1686 (1997).
Google Scholar
Souchu, P. et al. Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can. J. Fish. Aquat. Sci. 67, 743–753 (2010).
Google Scholar
Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).
Google Scholar
Reid, P. C., Lancelot, C., Gieskes, W. W. C., Hagmeier, E. & Weichart, G. Phytoplankton of the North Sea and its dynamics: A review. Neth. J. Sea Res. 26, 295–331 (1990).
Google Scholar
Derolez, V. et al. Two decades of oligotrophication: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf Sci. 241, 106810 (2020).
Google Scholar
Yool, A., Martin, A. P., Fernández, C. & Clark, D. R. The significance of nitrification for oceanic new production. Nature 447, 999–1002 (2007).
Google Scholar
Constantin, S., Constantinescu, Ș & Doxaran, D. Long-term analysis of turbidity patterns in Danube Delta coastal area based on MODIS satellite data. J. Mar. Syst. 170, 10–21 (2017).
Google Scholar
de Jorge, V. N. & van Beusekom, J. E. E. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnol. Oceanogr. 40, 776–778 (1995).
Google Scholar
Ubertini, M. et al. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: Consequences for microphytobenthos resuspension phenomenon. PLoS One 7, e44155 (2012).
Google Scholar
Madoni, P. Benthic ciliates in Adriatic Sea lagoons. Eur. J. Protistol. 42, 165–173 (2006).
Google Scholar
Cruz, J. et al. Plankton community and copepod production in a temperate coastal lagoon: What is changing in a short temporal scale?. J. Sea Res. 157, 101858 (2020).
Google Scholar
Audouin, J. Hydrologie de l’étang de Thau. Rev. Trav. Inst. Pêches Marit. 26, 5–104 (1962).
Byun, D. S., Wang, X. H. & Holloway, P. E. Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea. Estuar. Coast. Shelf Sci. 59, 185–196 (2004).
Google Scholar
Stefanidou, N., Genitsaris, S., Lopez-Bautista, J., Sommer, U. & Moustaka-Gouni, M. Unicellular eukaryotic community response to temperature and salinity variation in mesocosm experiments. Front. Microbiol. 9, 2444 (2018).
Google Scholar
Xu, N. et al. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae 9, 13–17 (2010).
Google Scholar
Greenwald, G. M. & Hurlbert, S. H. Microcosm analysis of salinity effects on coastal lagoon plankton assemblages. In Saline Lakes V (ed. Hurlbert, S. H.) 307–335 (Springer Netherlands, 1993).
Google Scholar
Fiandrino, A., Giraud, A., Robin, S. & Pinatel, C. Validation d’une méthode d’estimation des volumes d’eau échangés entre la mer et les lagunes et définition d’indicateurs hydrodynamiques associés (2012).
Mostajir, B., Mas, S., Parin, D. & Vidussi, F. High-Frequency physical, biogeochemical and meteorological data of Coastal Mediterranean Thau Lagoon Observatory. SEANOE (2018).
Données Publiques de Météo-France—Accueil. https://donneespubliques.meteofrance.fr/.
Kraberg, A., Baumann, M. & Dürselen, C.-D. Coastal phytoplankton: Photo guide for Northern European seas (Univerza v Ljubljani, 2010).
Bérard-Therriault, L., Poulin, M. & Bossé, L. Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent incluant également certains protozoaires Canadian Special Publication of Fisheries and Aquatic Sciences No. 128 (NRC Research Press, 1999).
Source: Ecology - nature.com