Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).
Google Scholar
Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2577 (2018).
Google Scholar
Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 325, 1121–1124. https://doi.org/10.1126/science.1172460 (2009).
Google Scholar
Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027. https://doi.org/10.1111/1365-2664.12938 (2017).
Google Scholar
Suding, K. N. Toward an era of restoration in ecology: Successes, failures, and opportunities ahead. Annu. Rev. Ecol. Evol. Syst. 42, 465–487. https://doi.org/10.1146/annurev-ecolsys-102710-145115 (2011).
Google Scholar
Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).
Google Scholar
Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
Google Scholar
Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407. https://doi.org/10.1111/j.1461-0248.2009.01430.x (2010).
Google Scholar
Schultz, P. A. et al. Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am. J. Bot. 88, 1650–1656. https://doi.org/10.2307/3558410 (2001).
Google Scholar
Koske, R. E., & Gemma, J. N. Mycorrhizae and succession in plantings of beachgrass in sand dunes. Am. J. Bot. 84(1), 118–130 (1997).
Google Scholar
Smith, M. E., Facelli, J. M. & Cavagnaro, T. R. Interactions between soil properties, soil microbes and plants in remnant-grassland and old-field areas: a reciprocal transplant approach. Plant Soil 433, 127–145. https://doi.org/10.1007/s11104-018-3823-2 (2018).
Google Scholar
Tipton, A. G., Middleton, E. L., Spollen, W. G. & Galen, C. Anthropogenic and soil environmental drivers of arbuscular mycorrhizal community composition differ between grassland ecosystems. Botany 97, 85–99. https://doi.org/10.1139/cjb-2018-0072 (2019).
Google Scholar
Hamman, S. T. & Hawkes, C. V. Biogeochemical and microbial legacies of non-native grasses can affect restoration success. Restor. Ecol. 21, 58–66. https://doi.org/10.1111/j.1526-100X.2011.00856.x (2013).
Google Scholar
Emery, S. M. & Rudgers, J. A. Beach restoration efforts influenced by plant variety, soil inoculum, and site effects. J. Coast. Res. 27, 636. https://doi.org/10.2112/jcoastres-d-10-00120.1 (2010).
Google Scholar
Sylvia, D. M., Jarstfer, A. G. & Vosátka, M. Comparisons of vesicular-arbuscular mycorrhizal species and inocula formulations in a commercial nursery and on diverse Florida beaches. Biol. Fertil. Soils 16, 139–144. https://doi.org/10.1007/BF00369416 (1993).
Google Scholar
Sylvia, D. M. & Will, M. E. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl. Environ. Microbiol. 54, 348–352 (1988).
Google Scholar
Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107. https://doi.org/10.1038/nplants.2016.107 (2016).
Google Scholar
Bothe, H., Turnau, K. & Regvar, M. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20, 445–457. https://doi.org/10.5586/asbp.2008.019 (2010).
Google Scholar
Middleton, E. L. & Bever, J. D. Inoculation with a native soil community advances succession in a grassland restoration. Restor. Ecol. 20, 218–226. https://doi.org/10.1111/j.1526-100X.2010.00752.x (2012).
Google Scholar
Crawford, K. M., Busch, M. H., Locke, H. & Luecke, N. C. Native soil microbial amendments generate trade-offs in plant productivity, diversity, and soil stability in coastal dune restorations. Restor. Ecol. https://doi.org/10.1111/rec.13073 (2019).
Google Scholar
Eom, A. H., Hartnett, D. C. & Wilson, G. W. T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122, 435–444. https://doi.org/10.1007/s004420050050 (2000).
Google Scholar
Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).
Google Scholar
Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325. https://doi.org/10.1146/annurev-ecolsys-112414-054306 (2015).
Google Scholar
Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 13278. https://doi.org/10.1111/ele.13278 (2019).
Google Scholar
Mills, K. E. & Bever, J. D. Maintenance of diversity within plant communities: Soil pathogens as agents of negative feedback. Ecology 79, 1595–1601. https://doi.org/10.1890/0012-9658(1998)079[1595:MODWPC]2.0.CO;2 (1998).
Google Scholar
Koziol, L. et al. The plant microbiome and native plant restoration: The example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).
Google Scholar
Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: A meta-analysis. Restor. Ecol. 23, 625–634. https://doi.org/10.1111/rec.12231 (2015).
Google Scholar
Koziol, L. & Bever, J. D. AMF, phylogeny, and succession: Specificity of response to mycorrhizal fungi increases for late-successional plants. Ecosphere https://doi.org/10.1002/ecs2.1555 (2016).
Google Scholar
Middleton, E. L. et al. Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6, 276. https://doi.org/10.1890/ES15-00152.1 (2015).
Google Scholar
Solís-Domínguez, F. A., Valentín-Vargas, A., Chorover, J. & Maier, R. M. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci. Total Environ. 409, 1009–1016. https://doi.org/10.1016/j.scitotenv.2010.11.020 (2011).
Google Scholar
Vogelsang, K. M., Reynolds, H. L. & Bever, J. D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562. https://doi.org/10.1111/j.1469-8137.2006.01854.x (2006).
Google Scholar
Larimer, A. L., Bever, J. D. & Clay, K. Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121, 2090–2096. https://doi.org/10.1111/j.1600-0706.2012.20153.x (2012).
Google Scholar
Sikes, B. A., Cottenie, K. & Klironomos, J. N. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97, 1274–1280. https://doi.org/10.1111/j.1365-2745.2009.01557.x (2009).
Google Scholar
Defeo, O. et al. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 81, 1–12 (2009).
Google Scholar
Feagin, R. A. et al. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ. 13, 203–210 (2015).
Google Scholar
Feagin, R. A. et al. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar Coast Shelf Sci. 219, 97–106. https://doi.org/10.1016/j.ecss.2019.01.018 (2019).
Google Scholar
Sigren, J. M., Figlus, J. & Armitage, A. R. Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore Beach 82, 5–12 (2014).
Sigren, J. M. et al. The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from Hurricane Ike. J. Coast Res. 341, 164–173. https://doi.org/10.2112/jcoastres-d-16-00169.1 (2018).
Google Scholar
Silva, R. et al. Response of vegetated dune-beach systems to storm conditions. Coast. Eng. 109, 53–62. https://doi.org/10.1016/j.coastaleng.2015.12.007 (2016).
Google Scholar
Lane, C., Wright, S. J., Roncal, J. & Maschinski, J. Characterizing environmental gradients and their influence on vegetation zonation in a subtropical coastal sand dune system. J. Coast. Res. 4, 213–224. https://doi.org/10.2112/07-0853.1 (2008).
Google Scholar
Miller, T. E., Gornish, E. S. & Buckley, H. L. Climate and coastal dune vegetation: Disturbance, recovery, and succession. Plant Ecol. 206, 97–104. https://doi.org/10.1007/s11258-009-9626-z (2010).
Google Scholar
Hewitt, E. J. & Eden, A. Sand and water culture methods used in the study of plant nutrition. Analyst 78, 329–330 (1953).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria). https://www.R-project.org/ (2020).
Farrer, E. C. & Goldberg, D. E. Litter drives ecosystem and plant community changes in cattail invasion. Ecol. Appl. 19, 398–412. https://doi.org/10.1890/08-0485.1 (2009).
Google Scholar
Bauer, J. T., Koziol, L. & Bever, J. D. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia https://doi.org/10.1007/s00442-020-04598-9 (2020).
Google Scholar
Ohsowski, B. M., Klironomos, J. N., Dunfield, K. E. & Hart, M. M. The potential of soil amendments for restoring severely disturbed grasslands. Appl. Soil. Ecol. 60, 77–83. https://doi.org/10.1016/j.apsoil.2012.02.006 (2012).
Google Scholar
Koziol, L. & Bever, J. D. The missing link in grassland restoration: arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. J. Appl. Ecol. 54, 1301–1309. https://doi.org/10.1111/1365-2664.12843 (2017).
Google Scholar
Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193. https://doi.org/10.1016/0169-5347(94)90088-4 (1994).
Google Scholar
Heneghan, L. et al. Integrating soil ecological knowledge into restoration management. Restor. Ecol. 16, 608–617. https://doi.org/10.1111/j.1526-100X.2008.00477.x (2008).
Google Scholar
Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long-term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019).
Google Scholar
Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233–242. https://doi.org/10.1038/s42003-019-0481-8 (2019).
Google Scholar
Source: Ecology - nature.com