Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. PNAS 112, 7519–7752 (2015).
Google Scholar
Sømme, L. & Block, W. Adaptations to alpine and polar environments in insects and other terrestrial arthropods. In Insects at Low Temperature (eds Lee, R. E. & Denlinger, D. L.) (Springer, 1991).
Springer, M. Marine insects. In: Marine Biodiversity of Costa Rica, Central America. (ed. Wehrtmann, I. S. & Cortés, J.) Monographiae Biologicae, vol 86. (Springer, 2009).
Cebeci, H. H. et al. The wood boring insects (Coleoptera: Cerambycidae and Buprestidae) recorded as the new pests for acer Undulatum Pojark from the Babadag mountain (SW Turkey). Fresenius Environ. Bull. 27, 9325–9328 (2018).
Google Scholar
Becker, G. Untersuchungen über die Ernährungsphysiologie der Hausbockkäferlarven. Z. Vgl. Physiol. 29, 315–388 (1942).
Google Scholar
Nardi, J. B., Mackie, R. I. & Dawson, J. O. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems?. J. Insect Physiol. 48, 751–763 (2002).
Google Scholar
Wermelinger, B., Duelli, P. & Obrist, M. K. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. 77, 133–148 (2002).
Evans, H. F., Moraal, L. G. & Pajares, J. A. Biology, ecology and economic importance of Buprestidae and Cerambycidae. In: Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis (ed. Lieutier, F., Day, K. R., Battisti, A., Grégoire, J. C. & Evans, H. F.) 447–474 (Springer, 2004).
FAO (Food and Agriculture Organization of the United Nations) Global review of forest pests and diseases. FAO Forestry Paper 156 (2009).
Offenberg, J., Nielsen, J. S. & Damgaard, V. Wood Ant (Formica polyctena) services and disservices in a danish apple plantation. Sociobiology 66, 247–256 (2019).
Google Scholar
Cline, A., Ivie, M. A., Bellamy, C. L. & Scher, J. A Resource for Wood Boring Beetles of the World: Wood Boring Beetle Families, Lucid v. 3.4. USDA/APHIS/PPQ Center for Plant Health Science and Technology, Montana State University, and California Department of Food and Agriculture. http://www.lucidcentral.org/keys/v3/WBB (2009).
Rudinski, J. A. Ecology of Scolytidae. Annu. Rev. Entomol. 7, 327–348 (1962).
Google Scholar
Huber, D. P. W., Aukema, B. H., Hodgkinson, R. S. & Lindgren, B. S. Successful colonization, reproduction, and new generation emergence in live interior hybrid spruce, Picea engelmannii x glauca, by mountain pine beetle, Dendroctonus ponderosae. Agric. For. Entomol. 11, 83–89 (2009).
Google Scholar
O’neill, K. M., Fultz, J. E. & Ivie, M. A. Distribution of adult Cerambycidae and Buprestidae (Coleoptera) in a subalpine forest under shelterwood management. Coleopt. Bull. 62(1), 27–36 (2008).
Google Scholar
Leather, S. R., Day, K. R. & Salisbury, A. N. The biology and ecology of the large pine weevil, Hylobius abietis (Coleoptera: Curculionidae): A problem of dispersal?. Bull. Entomol. Res. 89, 3–16 (1999).
Google Scholar
Nordlander, G., Bylund, H., Örlander, G. & Wallertz, K. Pine weevil population density and damage to coniferous seedlings in a regeneration area with and without shelterwood. Scand. J. For. Res. 18, 438–448 (2003).
Google Scholar
Nordlander, G., Hellqvist, C., Johansson, K. & Nordenhem, H. Regeneration of European boreal forests: Effectiveness of measures against seedling mortality caused by the pine weevil Hylobius abietis. For. Ecol. Manag. 262(12), 2354–2363 (2011).
Google Scholar
Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).
Google Scholar
Kahuthia-Gathu, R., Kirubi, D. T. & Gitonga, D. Composition and abundance ofwood-boring beetles of Acacia xanthophloea and their associated natural enemies in Thika, Kenya. J. Asia Pac. Biodivers. 11, 248–254 (2018).
Google Scholar
Holmes, T. & Koch, F. Bark beetle epidemics, life satisfaction, and economic well-being. Forests 10, 696 (2019).
Google Scholar
Adlung, K. G. A critical evaluation of the European research on use of red wood ants (Formica rufa group) for the protection of forests against harmful insects. Z. Angew. Entomol. 57, 167–189 (1966).
Google Scholar
Goldazarena, A., Romón, P. & López, S. Bark beetles control in forests of Northern Spain. Integrated Pest Management and Pest Control—Current and Future Tactics, Dr. Sonia Soloneski (Ed), ISBN: 978-953-51-0050-8, In Tech. http://www.intechopen.com/books/integrated-pest-management-and-pest-control-current-and-future-tactics/bark-beetles-control-in-forests-of-northern-spain (2012).
IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org (2020).
Abdullah, H., Darvishzadeh, R., Skidmore, A. K., Groen, T. A. & Heurich, M. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int. J. Appl. Earth Obs. 64, 199–209 (2018).
Google Scholar
Bentz, B. J. & Jӧnsson, A. M. Modeling bark beetle responses to climate change. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F. & Hofstetter, R.) 533–553 (Elsevier Academic Press, 2015).
Google Scholar
Linder, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol. Manag. 259, 698–709 (2010).
Google Scholar
Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).
Google Scholar
Schowalter, T. D. Insect ecology: an ecosystem approach, 3rd ed. (ed. Schowalter, T. D.) (Academic Press, 2011).
Frizzi, F., Masoni, A., Quilghini, G., Ciampelli, P. & Santini, G. Chronicle of an impact foretold: The fate and effect of the introduced Formica paralugubris ant. Biol. Invasions 20, 3575–3589 (2018).
Google Scholar
Leong, M. et al. The habitats humans provide: Factors affecting the diversity and composition of arthropods in houses. Sci. Rep. 7, 15347 (2017).
Google Scholar
Schweiger, O. et al. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organisational levels and spatial scales. J. Appl. Ecol. 42, 1129–1139 (2005).
Google Scholar
Trigos-Peral, G. et al. Three categories of urban green areas and the effect of their different management on the communities of ants, spiders and harvestmen. Urban Ecosyst. 23, 803–818 (2020).
Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
Google Scholar
Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The ants of Poland with reference to the myrmecofauna of Europe. Fauna Poloniae 4 (Natura optima dux Foundation, 2012).
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).
Google Scholar
Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9, 4355 (2018).
Google Scholar
Sorvari, J. & Hakkarainen, H. Wood ants are wood ants: Deforestation causes population declines in the polydomous wood ant Formica aquilonia. Ecol. Entomol. 32, 707–711 (2007).
Google Scholar
Roura-Pascual, N. et al. Geographic potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc. R. Soc. Lond. B. 271(1557), 2527–2535 (2004).
Google Scholar
Kroll, J. C. & Fleet, R. R. Impact of woodpecker predation on over-wintering within-tree populations of the southern pine beetle (Dendroctonus frontalis). In The Role of Insectivorous Birds in Forest Ecosystems (eds Dickson, J. G. et al.) 269–281 (Academic Press, 1979).
Google Scholar
Khanday, A. L., Sureshan, P. M., Buhroo, A. A., Ranjith, A. P. & Tselikh, E. Pteromalid wasps (Hymenoptera: Chalcidoidea) associated with bark beetles, with the description of a new species from Kashmir, India. J. Asia Pac. Biodivers. 12, 262–272 (2019).
Google Scholar
Reeve, J. D. Predation and bark beetle dynamics. Oecologia 112, 48–54 (1997).
Google Scholar
Curtsdotter, A. et al. Ecosystem function in predator–prey food webs confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2018).
Google Scholar
Choate, B. & Drummond, F. A. Ants as biological control agents in agricultural cropping systems. Terr. Arthropod Rev. 4, 157–180 (2011).
Google Scholar
Maňák, V., Björklund, N., Lenoir, L. & Nordlander, G. The effect of red wood ant abundance on feeding damage by the pine weevil Hylobius abietis. Agric. For. Entomol. 17, 57–63 (2015).
Google Scholar
Robinson, E. J. H., Stockan, J. A. & Glenn, R. I. Wood ants and their interaction with other organisms. In Wood Ant Ecology and Conservation (eds Stockan, A. & Robinson, E. J. H.) 177–206 (Cambridge Universsity Press, 2016).
Sorvari, J. Foraging distances and potentiality in forest pest insect control: An example with two candidate ants (Hymenoptera: Formicidae). Myrmecol. News 12, 211–215 (2009).
Gößwald, K. Die Waldameise im Ökosystem Wald, ihr Nutzen und ihre Hege. Aula Verlag, Wiesbaden, 510 pp (1990). (shortened editon is 978-3-89104-755-2 (ISBN)).
Juhász, O. et al. Large- and small-scale environmental factors drive distributions of ant mound size across a latitudinal gradient. Insects 11, 350 (2020).
Google Scholar
Juhász, O. et al. Consequences of climate change-induced habitat conversions on red wood ants in a Central European mountain: a case study. Animals 10, 1677 (2020).
Google Scholar
Risch, A., Ellis, S. & Wiswell, H. Where and why? Wood ant population ecology. In Wood Ant Ecology and Conservation (eds Stockan, A. & Robinson, E. J. H.) 81–105 (Cambridge Universsity Press, 2016).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H. Vegan: Community Ecology Package (2019).
Roberts, D.W. (2010) labdsv: Ordination and Multivariate Analysis for Ecology. http://cran.r-project.org/package=labdsv
Bates, D., Maechler, M., Bolker, B. & Walke, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).
Google Scholar
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1. 0. CRAN/GitHub (2016).
Lindén, A. & Mäntyniemi, S. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 97, 1414–1421 (2011).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Google Scholar
Schowalter, T. D. Ecology and management of bark beetles (Coleoptera: Curculionidae: Scolytinae) in Southern Pine Forests. J. Integ. Pest Mngmt. 3, 1–7 (2012).
Google Scholar
Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).
Google Scholar
Siemann, E., Haarstad, J. & Tilman, D. Dynamics of plant and arthropod diversity during old field succession. Ecography 22, 406–414 (1999).
Google Scholar
Schlyte, F. & Anderbrandt, O. Competition and niche separation between two bark beetles: Existence and mechanisms. Oikos 68, 437–447 (1993).
Google Scholar
Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioSci 58, 501–517 (2008).
Google Scholar
Drees, B. M., Jackman, J. A. & Merchant, M. E. Wood-Boring Insects of Trees and Shrub. Texas Agricultural Extension Service. http://hdl.handle.net/1969.1/160397 (1994).
Ray, C. et al. Patterns of woodboring beetle activity following fires and bark beetle outbreaks in montane forests of California, USA. Fire Ecol. 15, 21 (2019).
Google Scholar
Risch, S. J. & Carroll, C. R. The ecological role of ants in two Mexican agroecosystems. Oecologia 55, 114–119 (1982).
Google Scholar
Maák, I. et al. Behaviours indicating cannibalistic necrophagy in ants are modulated by the perception of pathogen infection level. Sci. Rep. 10, 17906 (2020).
Google Scholar
Doležal, P. & Sehnal, F. A simple method for the detection of imaginal diapause in beetles. J. Appl. Entomol. 131(3), 221–223 (2007).
Google Scholar
Horstmann, K. Untersuchungen ueber den Nahrungserwerb der Waldameisen (Formica polyctena Foerster) im Eichenwald II Abhaengigkeit vom Jahresverlauf und vom Nahrungsangebot. Oecologia (Berlin) 8, 371–390 (1972).
Google Scholar
Overbeck, M. & Schmidt, M. Modelling infestation risk of Norway spruce by Ips typographus (L.) in the Lower Saxon Harz Mountains (Germany). For. Ecol. Manag. 266, 115–125 (2012).
Google Scholar
Ayre, G. Response to movement by Formica polyctena Forst. Nature 199, 405–406 (1963).
Google Scholar
Thom, D., Seidl, R., Steyrer, G., Krehan, H. & Formayer, H. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manag. 307, 293–302 (2013).
Google Scholar
Czechowski, W. & Vepsäläinen, K. Territory size of wood ants (Hymenoptera: Formicidae): A search for limits of existence of Formica polyctena Först., an inherently polygynic and polycalic species. Ann. Zool. 59, 179–187 (2009).
Google Scholar
Source: Ecology - nature.com