in

Trait gradients inform predictions of seagrass meadows changes to future warming

  • 1.

    Lovejoy, T. E. & Hannah, L. Biodiversity and Climate Change: Transforming the Biosphere (Yale University Press, 2005).

    Google Scholar 

  • 2.

    Bellard, C., Berttelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Hawkins, B. A. et al. Energy, water, and broad scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article 

    Google Scholar 

  • 4.

    Pearce, A. & Feng, M. Observation of warming on the western Australia continental shelf. Mar. Freshwater Res. 58, 914–920 (2007).

    Article 

    Google Scholar 

  • 5.

    Ridgway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).

    ADS 

    Google Scholar 

  • 6.

    Chen, L., Huang, J. G., Ma, Q. & Hanninen, H. Long-term changes in the impacts of global warming on leaf phenology of four temperature tree species. Glob. Change Biol. 25(3), 997–1004 (2018).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Poloczanska, E. S. et al. Climate change and Australian marine life. Oceanogr. Mar. Biol. 45, 407–478 (2007).

    Google Scholar 

  • 9.

    Maltby, K. M. et al. Projected impacts of warming seas on commercially fished species at a biogeographic boundary of the European continental shelf. J. Appl. Ecol. 57, 2222–2233 (2019).

    Article 

    Google Scholar 

  • 10.

    Melzner, F., Buchholz, B., Wolf, F., Panknin, U. & Wall, M. Ocean winter warming induced starvation of predator and prey. Proc. R. Soc. B 287, 20200970 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    He, H. et al. Turning up the heat: Warming influences plankton biomass and spring phenology in subtropical waters characterized by extensive fish omnivory. Oecologia 194, 251–265 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Pagès-Escolà, M. et al. Divergent responses to warming of two common co-occurring Mediterranean bryozoans. Sci. Rep. 8, 17455 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Gómez-Gras, D. et al. Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment. Ecol. Evol. 9(7), 4168–4180 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Huret, M., Bourriau, P., Doray, M., Gohin, F., Petitgas, P. Survey timing vs. ecosystem scheduling: Degree-days to underpin observed interannual variability in marine ecosystems. Progr. Oceanogr. 166, 30–40 (2018).

  • 15.

    Strelkov, P., Katolikova, M. & Väinolä, R. Temporal change of the Baltic sea-North Sea mussle hybrid zone over two decades. Mar. Biol. 164, 1–14 (2017).

    Article 

    Google Scholar 

  • 16.

    Chiba, S. et al. Temperature and zooplankton size structure: Climate control and basin-scale comparison in the North Pacific. Ecol. Evol. 5(4), 968–978 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1–5 (2011).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Block, S. E., Olesen, E. & Krause-Jensen, D. Life history events of eelgrass Zostera marina L. populations across gradients of latitude and temperature. Mar. Ecol. Progr. Ser. 590, 79–93 (2018).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Cure, K. et al. Spatiotemporal patterns of abundance and ecological requirements of a labrid’s juveniles reveal conditions for establishment success and range shift capacity. J. Exp. Mar. Biol. Ecol. 500, 34–45 (2018).

    Article 

    Google Scholar 

  • 20.

    Smale, D. A. et al. Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Ruiz, J. M. et al. Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica. Mar. Pollut. Bull. 134, 49–54 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Rasconi, S., Winter, K. & Kainz, M. J. Temperature increase and fluctuation induce phytoplankton biodiversity loss—Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 7, 2936–2946 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Smale, D. A., Wernberg, T., Yunnie, A. L. E. & Vance, T. The rise of Laminaria ochroleuca in the Western English Channel (UK) and preliminary comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar. Ecol. 36, 1033–1044 (2015).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Pansch, C. & Hibenthal, C. A new mesocosm system to study the effects of environmental variability on marine species and communities. Limnol. Oceanogr. Methods 17, 145–162 (2019).

    Article 

    Google Scholar 

  • 25.

    Doo, S. S. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 77, 2411–2422 (2020).

    Article 

    Google Scholar 

  • 26.

    Kim, J.-H. et al. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Mar. Pollut. Bull. 157, 111324 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Bonaviri, C., Graham, M., Gianguzza, P. & Shears, N. T. Warmer temperatures reduce the influence of an important keystone predator. J. Anim. Ecol. 86, 490–500 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Carr, L. A., Gittman, R. K. & Bruno, J. F. Temperature influences herbivory and algal biomass in the Galápagos Islands. Front. Mar. Sci. 5, 279 (2018).

    Article 

    Google Scholar 

  • 29.

    De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).

    Article 

    Google Scholar 

  • 30.

    Behrenfeld, M. J. Climate-mediated dance of the plankton. Nat. Clim. Change 4(10), 880–887 (2014).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444(7120), 752–755 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Bricaud, A., Morel, A., Babin, M., Allali, K. & Hervè, C. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic waters: Analysis and implications for bio-optical models. J. Geophys. Res. 103, 31033–31044 (1998).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Jaud, T., Dragon, A. C., Garcia, J. V. & Guinet, C. Relationship between chlorophyll a concentration, light attenuation and diving depth of the southern elephant seal Mirounga leonina. PLoS ONE 7(10), e47444 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Dunstan, P. K. et al. Global patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 8, 14624 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Sanford, E. & Kelly, M. W. Local adaptation of marine invertebrates. Annu. Rev. Mar. Sci. 3, 509–535 (2011).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30, 429–440 (2011).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Baumann, H. & Conover, D. O. Adaptation to climate change: Contrasting patterns of thermal-reaction-norm evolution in Pacific versus Atlantic silversides. Proc. R. Soc. B 278(1716), 2265–2273 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Castillo, K. D., Ries, J. B., Weiss, J. M. & Lima, F. P. Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat. Clim. Change 2(10), 756–760 (2012).

    Article 

    Google Scholar 

  • 39.

    Thomas, M. K., Kremer, C. T., Klausmeier, C. T. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 6110 (2012).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Chefaoui, R. M., Duarte, C. M. & Serrao, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Change Biol. 24(10), 4919–4928 (2018).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Duarte, B. et al. Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Front. Mar. Sci. 5, 190 (2018).

    Article 

    Google Scholar 

  • 42.

    Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000).

    Book 

    Google Scholar 

  • 43.

    Larkum, A. W. D., Orth, R. J. & Duarte, C. M. Seagrasses: Biology, Ecology and Conservation (Springer, 2006).

    Google Scholar 

  • 44.

    Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5(7), 505–509 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Fonseca, M. S. & Cahalan, J. A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. Coast. Shelf Sci. 35, 565–576 (1992).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Fonseca, M. S. & Koehl, M. A. R. Flow in Seagrass canopies: the influence of patch width. Estuar. Coast. Shelf Sci. 67, 1–9 (2006).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Telesca, L. et al. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 5, 12505 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Marbà, N. & Duarte, C. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375 (2010).

  • 49.

    Beca-Carretero, P., Guiheneuf, F., Krause-Jensen, D. & Stengel, D. B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Environ. Res. 161, 105075 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Marín-Guirao, L., Ruiz, J., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 28615 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Marín-Guirao, L., Entrambasaguas, L., Dattolo, E., Ruiz, J. M. & Procaccini, G. Mechanisms of resistance to intense warming events in an iconic seagrass species. Front. Plant Sci. 8, 1142 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Tutar, O., Marín-Guirao, L., Ruiz, J. M. & Procaccini, G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar. Environ. Res. 132, 94–102 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Marín-Guirao, L., Entrambasaguas, L., Ruiz, J. M. & Procaccini, G. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol. Ecol. 28, 2486–2501 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Peirano, A. et al. Phenology of the Mediterranean seagrass Posidonia oceanica (L.) Delile: Medium and long-term cycles and climate inferences. Aquat. Bot. 94(2), 77–92 (2011).

    Article 

    Google Scholar 

  • 55.

    Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98(4), 725–736 (2010).

    Article 

    Google Scholar 

  • 56.

    Shaltaut, M. & Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean. Oceanologia 56(3), 441–443 (2014).

    Google Scholar 

  • 57.

    Adloff, F. et al. Mediterranean sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).

    Article 

    Google Scholar 

  • 58.

    E.C. Marine Strategy Framework Directive 2008/56/EC of the European Parliament and of the Council, of 17 June 2008, establishing a framework for Community action in the field of marine environmental policy (Marine Strategy Framework Directive). OJEU 164, 19–40 (2008).

  • 59.

    Montefalcone, M. Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: A review. Ecol. Indic. 9, 595–604 (2009).

    Article 

    Google Scholar 

  • 60.

    Steinacher, M. et al. Projected 21st century decrease in marine productivity: A multi-model analysis. Biogeosciences 7, 979–1005 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming?. Geophys. Res. Lett. 38, LO2603 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Dutkiewicz, S. et al. Ocean colour signature of climate change. Nat. Commun. 10, 578 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Kim, G.-U., Seo, K.-H. & Chen, D. Climate change over the Mediterranean and current destruction of marine ecosystem. Sci. Rep. 9, 18813 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Kimball, S., Angert, A. L., Huxman, T. E. & Venable, D. L. Contemporary climate change in the Sonoran Desert favors cold-adapted species. Glob. Change Biol. 16, 1555–1565 (2010).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).

    Article 

    Google Scholar 

  • 66.

    Pergent, G., Pergent-Martini, C. & Boudouresque, C. F. Utilisation de l’herbier a Posidonia oceanica comme indicateur biologique de la qualite du milieu littoral en Mediterranee: etat des connaissances. Mesogee 54, 3–27 (1995).

    Google Scholar 

  • 67.

    Pergent-Martini, C. & Pergent, G. Spatio-temporal dynamics of Posidonia oceanica beds near a sewage outfall (Mediterranean, France). in Seagrass Biology: Proceeding of an International Workshop, Rottnest Island, Australia, 25–29 January 1996. Faculty of Sciences, the University of Western Australia Publications: Nedlands, Australia, pp. 299–306 (Kuo, J., Phillips, R. C., Walker, D. I., Kirkman, H. eds.) (1996).

  • 68.

    Scardi, M., Chessa, L. A., Fresi, E., Pais, A. & Serra, S. Optimizing interpolation of shoot density data from a Posidonia oceanica seagrass bed. Mar. Ecol. 27, 339–349 (2006).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Kun-Seop, L., Sang, R. P. & Young, K. K. Effects of irradiance, temperature and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 350(1), 144–175 (2007).

    Google Scholar 

  • 70.

    Molenaar, H., Barthélémy, D., de Reffye, P., Meinesz, A. & Mialet, I. Modelling architecture and growth patterns of Posidonia oceanica. Aquat. Bot. 66, 85–99 (2000).

    Article 

    Google Scholar 

  • 71.

    Olesen, B., Enrìquez, S., Duarte, C. M. & Sand-Jensen, K. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Progr. Ser. 236, 89–97 (2002).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Ralph, P. J., Durako, M. J., Enriquez, S., Collier, C. J. & Doblin, M. A. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol. 350, 176–193 (2007).

    Article 

    Google Scholar 

  • 73.

    Ekstam, B. Ramet size equalization in a clonal plant, Phragmites australis. Oecologia 104, 440–446 (1995).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Van Kleunen, M., Fischer, M. & Schmid, B. Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 94, 515–524 (2001).

    Article 

    Google Scholar 

  • 75.

    Campagne, C. S., Salles, J. M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: Ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 1(10), e0163091 (2016).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Repolho, T. et al. Seagrass ecophysiological performance under ocean warming and acidification. Sci. Rep. 7, 41443 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Model. Softw. 130, 104717 (2020).

    Article 

    Google Scholar 

  • 79.

    Pazzaglia, J., Reusch, T. B. H., Terlizzi, A., Marín-Guirao, L. & Procaccini, G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol. Appl. 00, 1–21 (2021).

    Google Scholar 

  • 80.

    Olita, A., Ribotti, A., Fazioli, L., Perilli, A. & Sorgente, R. Surface circulation and upwelling in the Sardinia Sea: A numerical study. Cont. Shelf Res. 71, 95–108 (2013).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Pinardi, N. et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 132, 318–332 (2015).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Progr. Ser. 387, 27–37 (2009).

    ADS 
    Article 

    Google Scholar 

  • 83.

    Giraud, G. Contribution à la description et à la phénologie quantitative des herbiers de Posidonia oceanica (L.) Delile. Thèse de Doctorat de Spécialité en Océanologie, Université d’Aix-Marseille, Marseille (1977).

  • 84.

    Pergent, G. Lepidochronological analyses of the seagrass Posidonia oceanica (L.) Delile: a standardized approach. Aquat. Bot. 37, 39–54 (1990).

  • 85.

    Pagès, J. F. et al. Indirect interactions in seagrasses: Fish herbivores increase predation risk to sea urchins by modifying plant traits. Funct. Ecol. 26, 1015–1023 (2012).

    Article 

    Google Scholar 

  • 86.

    Zuur, A. F., Leno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • 87.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

  • 88.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).

    MATH 
    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy

    Researchers design sensors to rapidly detect plant hormones