in

Microbial community of soda Lake Van as obtained from direct and enriched water, sediment and fish samples

[adace-ad id="91168"]
  • 1.

    Nyakeri, E. M., Mwirichia, R. & Boga, H. Isolation and characterization of enzyme-producing bacteria from Lake Magadi, an extreme soda lake in Kenya. J. Microbiol. Exp. 6(2), 57–68 (2018).

    Google Scholar 

  • 2.

    Grant, W. D. Alkaline environments and biodiversity. In Extremophiles (eds Gerday, E. C. & Glansdorff, N.) (UNESCO, Eolss Publishers, 2006).

    Google Scholar 

  • 3.

    Jones, B. E. & Grant, W. D. Microbial diversity and ecology of alkaline environments. In Adaptation to Exotic Environments (ed. Seckbach, J.) 177–190 (Kluwer Academic Publishers, 2000).

    Google Scholar 

  • 4.

    Antony, C. P. et al. Microbiology of Lonar Lake and other soda lakes. J. Int. Soc. Microb. Ecol. 7(3), 468–476 (2013).

    Google Scholar 

  • 5.

    Boros, E. & Kolpakova, M. A review of the defining chemical properties of soda lakes and pans: An assessment on a large geographic scale of Eurasian inland saline surface waters. PLoS ONE 13(8), e0202205 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Grant, W. D. & Jones, B. E. Bacteria, archaea and viruses of soda lakes. In Soda lakes of East Africa (ed. Schagerl, M.) 97–148 (Springer p, 2016).

    Google Scholar 

  • 7.

    Lanzén, A. et al. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS ONE 8(8), e72577 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Asao, M., Pinkart, H. C. & Madigan, M. T. Diversity of extremophilic purple phototrophic bacteria in Soap Lake, a Central Washington (USA) Soda Lake. Environ. Microbiol. 13(8), 2146–2157 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Kulp, T. R. et al. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl. Environ. Microbiol. 72(10), 6514–6526 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Sorokin, D. Y. & Kuenen, J. G. Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol. Ecol. 52(3), 287–295 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Groth, I. et al. Bogoriella caseilytica gen. nov., sp. Nov., a new alkaliphilic actinomycete from a soda lake in Africa. Int. J. Syst. Evol. Microbiol. 47(3), 788–794 (1997).

    CAS 

    Google Scholar 

  • 12.

    Glombitza, C. et al. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Front. Microbiol. 4, 1–11 (2013).

    Article 

    Google Scholar 

  • 13.

    Bilgili, A. et al. Van Gölü’nden avlanan inci kefali örneklerinde arsenik düzeyleri. Turk. J. Vet. Anim. Sci. 23(2), 367–371 (1999).

    MathSciNet 

    Google Scholar 

  • 14.

    Kremer, B., Kaźmierczak, J. & Kempe, S. Authigenic replacement of cyanobacterially precipitated calcium carbonate by aluminium-silicates in giant microbialites of Lake Van (Turkey). Sedimentology 66(1), 285–304 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Reimer, A., Landmann, G. & Kempe, S. Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat. Geochem. 15(1–2), 195–222 (2009).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Tomonaga, Y. et al. Porewater salinity reveals past lake-level changes in Lake Van, the Earth’s largest soda lake. Sci. Rep. 7(1), 1–10 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Pecoraino, G., Dlessandro, W. & Inguaggiato, S. The other side of the coin: Geochemistry of alkaline lakes in volcanic areas. In Volcanic Lakes (eds Rouwet, D. et al.) 219–237 (Springer, 2015).

    Chapter 

    Google Scholar 

  • 18.

    Kaden, H. et al. Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van. Turkey. Water Resour. Res. https://doi.org/10.1029/2009WR008555 (2010).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Landmann, G. & Kempe, S. Annual deposition signal versus lake dynamics: Microprobe analysis of Lake Van (Turkey) sediments reveals missing varves in the period 11.2–10.2 ka BP. Facies 51(1–4), 135–145 (2005).

    Article 

    Google Scholar 

  • 20.

    Degens, E. T. et al. A geological study of Lake Van, eastern Turkey. Geol. Rundsch. 73(2), 701–734 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Duckworth, A. W. et al. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecol. 19(3), 181–191 (1996).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18(5), 791–809 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Zargar, K. et al. Identification of a novel oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola echrlichii strain MLHE-1. J. Bacteriol. 192, 3755–3762 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Zargar, K. et al. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14(7), 1635–1645 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Zorz, J. K. et al. A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 10(1), 1–10 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Matyugina, E. & Belkova, N. Distribution and diversity of microbial communities in meromictic soda Lake Doroninskoe (Transbaikalia, Russia) during winter. Chin. J. Oceanol. Limn. 33(6), 1378 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Liu, D. et al. Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int. J. Food Microbiol. 91, 297–304 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Ionescu, D. et al. Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS ONE 7, e38319 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Ondov, B. et al. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 385 (2011).

    Article 

    Google Scholar 

  • 32.

    Pruesse, E. et al. SINA: Accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14), 1823–1829 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Quast, C. et al. The silva ribosomal RNA gene database project: Improved data processing and webbased tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Rognes, T. et al. Vsearch: A versatile open source tool for metagenomics. Peer J. 4, e2584 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).

    Google Scholar 

  • 36.

    Duckworth, A. W. et al. Halomonas magadii sp. Nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley. Extremophiles 4(1), 53–60 (2000).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Xin, H. et al. Natronobacterium nitratireducens sp. nov., a aloalkaliphilic archaeon isolated from a soda lake in China. Int. J. Syst. Evol. Microbiol. 51(5), 1825–1829 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Joshi, A. et al. Nitrincola tapanii sp. nov., a novel alkaliphilic bacterium from An Indian Soda Lake. Int. J. Syst. Evol. Microbiol. 70(2), 1106–1111 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Menes, R. J. et al. Bacillus natronophilus sp. nov., an alkaliphilic bacterium isolated from a soda lake. Int. J. Syst. Evol. Microbiol. 70(1), 562–568 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Vavourakis, C. D. et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome. 6(1), 1–18 (2018).

    Article 

    Google Scholar 

  • 41.

    Yigit, A. et al. Determination of water quality by ion characterization of Van Lake Water. Iğdır Univ. J. Inst. Sci. Tech. 7(4), 169–179. https://doi.org/10.21597/jist.2017.210 (2017).

    Article 

    Google Scholar 

  • 42.

    Bilgili, A. et al. The natural quality of Van Lake and the levels of some heavy metals in grey mullet (Chalcalburus tariehi, Pallas 1811) samples taken from this lake. Ankara Üniv Vet Fak Dergisi 42, 445–450 (1995).

    Google Scholar 

  • 43.

    Demir Yetis, A. & Ozguven, A. Investigation of heavy metal pollution in surface waters of the Van Lake Edremit coast. Uludağ Univ. J. Fac. Eng. 25(2), 831–847. https://doi.org/10.17482/uumfd.752460 (2020).

    Article 

    Google Scholar 

  • 44.

    Ersoy Omeroglu, E. & Karaboz, I. Characterization and arsenic-tolerance potential of Halomonas sp. from Van Lake, Turkey. VI Congress of Macedonian Microbiologists With International Participation, 30 May–6 June, Abstract Book, pp. 200–201 (2018).

  • 45.

    Ersoy Omeroglu, E. Evaluation of arsenic pollution and the effect of arsenic on Branchybacterium paraconglomeratum in Van Lake. 1st World Conference On Sustaninable Life Sciences WOCOLS 2019, 30 June–7 July, Abstract Book, p. 17 (2019).

  • 46.

    Reimer, A. Hydrochemie und Geochemie der Sedimente und Porenwa¨sser des hochalkalinen Van Sees in der Osttu¨rkei. Dissertation, Facult Geosci Univ Hamburg, 136 pp, unpublished, (1995).

  • 47.

    Kempe, S. et al. Largest known microbialites discovered in Lake Van, Turkey. Nature 349, 605–608 (1991).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Kazmierczak, J. & Kempe, S. Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001. Naturwissenschaften 90, 167–172 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Lopez-Garcia, P. et al. Bacterial diversity and carbonate precipitation in the microbialites of the highly alkaline Lake Van, Turkey. Extremophiles 9, 263–274 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Poyraz, N. & Mutlu, M. B. Characterization of microbial populations of Lake Van by 16S metagenomics study. ESTUJST-A. 9(1), 80–88 (2020).

    Google Scholar 

  • 51.

    Poyraz, N. & Mutlu, B. M. Alkaliphilic bacterial diversity of Lake Van/Turkey. Biological Biodivers. Conserv. 10(1), 92–103 (2017).

    Google Scholar 

  • 52.

    Sen, F. et al. Endemic fish species of Van Lake basin. YYU J. Agr. Sci. 28, 63–70 (2018).

    Google Scholar 

  • 53.

    Danulat, E. & Kempe, S. Nitrogenous waste excretion at extremely alkaline pH: The story of Chalcalburnus tarichi (Cyprinidae), endemic to Lake Van, Eastern Turkey. Fish Physiol. Biochem. 9, 377–386 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Bostanci, D. & Polat, N. Age and growth of Alburnus tarichi (Güldenstädt, 1814): An endemic fish species of Lake Van (Turkey). J. Appl. Ichthyol. 27, 1346–1349 (2011).

    Article 

    Google Scholar 

  • 55.

    Burger, J. et al. Armenian Gull (Larus armenicus). Handbook of the Birds of the World Alive, Lynx Edicions, Barcelona (2015).

  • 56.

    Oremland, R. S. et al. Methanogenesis in Big Soda Lake, Nevada: An alkaline, moderately hypersaline desert lake. Appl. Environ. Microbiol. 43, 462–468 (1982).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Iversen, N. et al. Big Soda Lake (Nevada): 3: Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32, 804–814 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 58.

    Oremland, R. S. et al. The microbial arsenic cycle in Mono Lake, California. FEMS Microb. Ecol. 48, 15–27 (2004).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Sorokin, D. Y. et al. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 67, 528–538 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Sorokin, D. Y. et al. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibiricum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int. J. Syst. Evol. Microbiol. 51, 565–580 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Sorokin, D. Y. et al. Thioalkalivibrio thiocyanooxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria from the soda lakes able to grow with thiocyanate. Int. J. Syst. Evol. Microbiol. 52, 657–664 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Gorlenko, V. M. et al. Ectothiorhodospira variabilis sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes. Int. J. Syst. Evol. Microbiol. 69, 558–564 (2009).

    Google Scholar 

  • 63.

    Mwirichia, R. et al. Bacterial diversity in the haloalkaline Lake Elmenteita, Kenya. Curr. Microbiol. 62, 209–221 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Mesbah, N. M. et al. Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi an Natrun, Egypt. Microbial Ecol. 54, 598–616 (2007).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Deshmukh, K. B. et al. Bacterial diversity of Lonar soda lake of India. Indian J. Microbiol. 51, 107–111 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Zhao, D. et al. Abundant taxa and favorable pathways in the microbiome of soda-saline lakes in Inner Mongolia. Front. Microbiol. 11, 1740 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Lavrentyeva, E. V. et al. Prokaryotic diversity in the biotopes of the Gudzhirganskoe saline lake (Barguzin Valley, Russia). Mikrobiologiya 89, 359–368 (2020).

    CAS 

    Google Scholar 

  • 69.

    Glaring, M. A. et al. Microbial diversity in a permanently cold and alkaline environment in Greenland. PLoS ONE 10, e0124863 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Tavormina, P. L. et al. Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the ‘deep sea-1’clade of marine methanotrophs. Int. J. Syst. Evol. Microbiol. 65(1), 251–259 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Sorokin, D. Y. et al. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: Two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12, 431–439 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Holmes, D. E. et al. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 70, 6023–6030 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Pikuta, E. V. et al. Proteocatella sphenisci gen. nov., sp. nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano. Int. J. Syst. Evol. Microbiol. 59, 2302–2307 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Stams, A. J. M. & Hansen, T. A. Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud: Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch. Microbiol. 137, 329–337 (1984).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Finegold, S. M. et al. Anaerofustis stercorihominis gen. nov., sp. nov., from human feces. Anaerobe 10, 41–45 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Matthies, C. et al. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int. J. Syst. Evol. Microbiol. 50, 1591–1594 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Higashiguchi, D. T. et al. Pilibacter termitis gen. nov., sp. nov., a lactic acid bacterium from the hindgut of the Formosan subterranean termite (Coptotermes formosanus). Int. J. Syst. Evol. Microbiol. 56, 15–20 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Labrenz, M. et al. Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int. J. Syst. Evol. Microbiol. 59, 1935–1940 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Sorokin, D. Y. et al. Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. Nov. and Nitriliruptorales ord. nov. Int. J. Syst. Evol. Microbiol. 59, 248–253 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Shahinpei, A. et al. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family “Saccharospirillaceae”. Int. J. Syst. Evol. Microbiol. 64, 3610–3615 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 81.

    Munson, M. A. et al. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacteriol. 41, 566–568 (1991).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The use of multi-criteria method in the process of threat assessment to the environment

    3 Questions: Daniel Cohn on the benefits of high-efficiency, flexible-fuel engines for heavy-duty trucking