Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Google Scholar
Wright, J. S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).
Google Scholar
Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
Google Scholar
Connell, J. On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. Dyn. Popul. 298, 312 (1971).
Terborgh, J. W. Toward a trophic theory of species diversity. PNAS 112, 11415–11422 (2015).
Google Scholar
Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).
Google Scholar
LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).
Google Scholar
Chisholm, R. A. & Muller-Landau, H. C. A theoretical model linking interspecific variation in density dependence to species abundances. Theor. Ecol. 4, 241–253 (2011).
Google Scholar
Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).
Google Scholar
Chisholm, R. A. & Fung, T. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar4685 (2018).
Google Scholar
Hülsmann, L. & Hartig, F. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar2435 (2018).
Google Scholar
Detto, M., Visser, M. D., Wright, S. J. & Pacala, S. W. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 22, 1923–1939 (2019).
Google Scholar
LaManna, J. A. et al. Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar3824 (2018).
Google Scholar
LaManna, J. A. et al. Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science 360, eaar5245 (2018).
Google Scholar
LaManna, J. A., Mangan, S. A. & Myers, J. A. Conspecific negative density dependence and why its study should not be abandoned. Ecosphere 12, e03322 (2021).
Google Scholar
Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
Google Scholar
Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).
Google Scholar
Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
Google Scholar
Ricklefs, R. E. & He, F. Region effects influence local tree species diversity. PNAS 113, 674–679 (2016).
Google Scholar
Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
Google Scholar
Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).
Google Scholar
Grosso, S. D. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).
Google Scholar
Chase, J. M. Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science 27, (2010).
O’Brien, E. M. Climatic gradients in woody plant species richness: Towards an explanation based on an analysis of Southern Africa’s woody flora. J. Biogeography 20, 181–198 (1993).
Google Scholar
McCain, C. M. & Grytnes, J.-A. Elevational Gradients in Species Richness. In eLS (American Cancer Society, 2010).
Barry, R. G. Mountain Weather and Climate (Cambridge University Press, 2008).
Google Scholar
LaManna, J. A., Walton, M. L., Turner, B. L. & Myers, J. A. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol. Lett. 19, 657–667 (2016).
Google Scholar
Zhu, K., Woodall, C. W., Monteiro, J. V. D. & Clark, J. S. Prevalence and strength of density-dependent tree recruitment. Ecology 96, 2319–2327 (2015).
Google Scholar
Yao, J. et al. Abiotic niche partitioning and negative density dependence across multiple life stages in a temperate forest in northeastern China. J. Ecol. 108, 1299–1310 (2020).
Google Scholar
Leigh, E. G. et al. Why do some tropical forests have so many species of trees?. Biotropica 36, 447–473 (2004).
Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).
Google Scholar
Altman, J. et al. Linking spatiotemporal disturbance history with tree regeneration and diversity in an old-growth forest in northern Japan. PPEES 21, 1–13 (2016).
Kubota, Y., Hirao, T., Fujii, S., Shiono, T. & Kusumoto, B. Beta diversity of woody plants in the Japanese archipelago: The roles of geohistorical and ecological processes. J. Biogeogr. 41, 1267–1276 (2014).
Google Scholar
Mori, A. S. Local and biogeographic determinants and stochasticity of tree population demography. J. Ecol. 107, 1276–1287 (2019).
Google Scholar
Oohata, S. Distribution of tree species along the temperature gradient in the Japan archipelago (ii).: Life form and species distribution. Jap. J. Ecol. 40, 71–84 (1990).
Google Scholar
Kira, T. A Climatological Interpretation of Japanese Vegetation Zones 21–30 (Springer, 1977).
Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).
Google Scholar
Suzuki, S. N., Ishihara, M. I. & Hidaka, A. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan. Glob. Chan. Biol. 21, 3436–3444 (2015).
Google Scholar
Hara, M. Analysis of seedling banks of a climax beech forest: Ecological importance of seedling sprouts. Vegetatio 71, 67–74 (1987).
Homma, K. Effects of snow pressure on growth form and life history of tree species in Japanese beech forest. J. Veg. Sci. 8, 781–788 (1997).
Google Scholar
Gansert, D. Treelines of the Japanese Alps—altitudinal distribution and species composition under contrasting winter climates. Flora 199, 143–156 (2004).
Google Scholar
Hukusima, T. et al. New phytosociological classification of beech forests in Japan. Jpn. J. Ecol. 45, 79–98 (1995).
Matsui, T. et al. Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan. J. Veg. Sci. 15, 605–614 (2004).
Google Scholar
Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).
Google Scholar
Ishihara, M. I. et al. Forest stand structure, composition, and dynamics in 34 sites over Japan. Ecol. Res. 26, 1007–1008 (2011).
Google Scholar
Law, R. et al. Ecological information from spatial patterns of plants: Insights from point process theory. J. Ecol. 97, 616–628 (2009).
Google Scholar
Wright, S. J. et al. Reproductive size thresholds in tropical trees: Variation among individuals, species and forests. J. Trop. Ecol. 21, 307–315 (2005).
Google Scholar
Zhu, Y., Comita, L. S., Hubbell, S. P. & Ma, K. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J. Ecol. 103, 957–966 (2015).
Google Scholar
Ripley, B. D. Spatial point pattern analysis in ecology. In Develoments in Numerical Ecology (eds Legendre, P. & Legendre, L.) 407–429 (Springer, 1987).
Google Scholar
Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology (CRC Press, 2013).
Google Scholar
Loosmore, N. B. & Ford, E. D. Statistical inference using the G or K point pattern spatial statistics. Ecology 87, 1925–1931 (2006).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (2020).
Baddeley, A. & Turner, R. spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 12, 1–42 (2005).
Google Scholar
Wills, C., Condit, R., Foster, R. B. & Hubbell, S. P. Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. PNAS 94, 1252–1257 (1997).
Google Scholar
Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).
Google Scholar
Fibich, P., Vítová, A. & Lepš, J. Interaction between habitat limitation and dispersal limitation is modulated by species life history and external conditions: A stochastic matrix model approach. Comm. Ecol. 19, 9–20 (2018).
Google Scholar
Miyawaki, A. A vegetation ecological view of the Japanese archipelago. Bull. Inst. Environ. Sci. Technol. Yokohama Natl. Univ. 11, 85–101 (1984).
Mori, A. S. et al. Community assembly processes shape an altitudinal gradient of forest biodiversity. Glo. Ecol. Biogeogr. 22, 878–888 (2013).
Google Scholar
Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).
Brown, C., Law, R., Illian, J. B. & Burslem, D. F. R. P. Linking ecological processes with spatial and non-spatial patterns in plant communities. J. Ecol. 99, 1402–1414 (2011).
Google Scholar
Bastias, C. C. et al. Species richness influences the spatial distribution of trees in European forests. Oikos 129, 380–390 (2020).
Google Scholar
Hülsmann, L., Chisholm, R. A. & Hartig, F. Is variation in conspecific negative density dependence driving tree diversity patterns at large scales?. Trends Ecol. Evol. 36, 151–163 (2021).
Google Scholar
Damgaard, C. & Weiner, J. It’s about time: A critique of macroecological inferences concerning plant competition. Trends Ecol. Evol. 32, 86–87 (2017).
Google Scholar
Murata, I. et al. Effects of sika deer (Cervus nippon) and dwarf bamboo (Sasamorpha borealis) on seedling emergence and survival in cool-temperate mixed forests in the Kyushu Mountains. J. For. Res. 14, 296–301 (2009).
Google Scholar
Ackerly, D. D. et al. The geography of climate change: Implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).
Google Scholar
Source: Ecology - nature.com