in

Electric field detection as floral cue in hoverfly pollination

  • 1.

    Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Raguso, R. A. Flowers as sensory billboards: Progress towards an integrated understanding of floral advertisement. Curr. Opin. Plant Biol. 7, 434–440 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Goulson, D., Stout, J. C. & Hawson, S. A. Can flower constancy in nectaring butterflies be explained by Darwin’s interference hypothesis?. Oecologia 112, 225–231 (1997).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Goulson, D. & Wright, N. P. Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behav. Ecol. 9, 213–219 (1998).

    Article 

    Google Scholar 

  • 5.

    Von Arx, M., Goyret, J., Davidowitz, G. & Raguso, R. A. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths. Proc. Natl. Acad. Sci. 109, 9471–9476 (2012).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Leonard, A. S., Dornhaus, A. & Papaj, D. R. Forget-me-not: Complex floral displays, inter-signal interactions, and pollinator cognition. Curr. Zool. 57, 215–224 (2011).

    Article 

    Google Scholar 

  • 7.

    Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B. & Eisikowitch, D. The role of electrostatic forces in pollination. Plant Syst. Evol. 222, 133–142. https://doi.org/10.1007/bf00984099 (2000).

    Article 

    Google Scholar 

  • 8.

    Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination—Part 2: Simulations of pollen capture. Atmos. Environ. 41, 1596–1603 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Erickson, E. Surface electric potentials on worker honeybees leaving and entering the hive. J. Apic. Res. 14, 141–147 (1975).

    Article 

    Google Scholar 

  • 10.

    Edwards, D. Electrostatic charges on insects due to contact with different substrates. Can. J. Zool. 40, 579–584 (1962).

    Article 

    Google Scholar 

  • 11.

    Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B. & Eisikowitch, D. Pollen and Pollination 133–142 (Springer, 2000).

    Book 

    Google Scholar 

  • 12.

    Eskov, E. & Sapozhnikov, A. Mechanism of generation and perception of electric fields by honey bees. Biofizika 21, 1097–1102 (1976).

    CAS 

    Google Scholar 

  • 13.

    Clarke, D., Whitney, H., Sutton, G. & Robert, D. Detection and learning of floral electric fields by bumblebees. Science 340, 66–69 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen. Atmos. Environ. 41, 1587–1595 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Gan-Mor, S., Schwartz, Y., Bechar, A., Eisikowitch, D. & Manor, G. Relevance of electrostatic forces in natural and artificial pollination. Can. Agric. Eng. 37, 189–194 (1995).

    Google Scholar 

  • 16.

    Colin, M., Richard, D. & Chauzy, S. Measurement of electric charges carried by bees: Evidence of biological variations. J. Bioelectr. 10, 17–32 (1991).

    Article 

    Google Scholar 

  • 17.

    Pinillos, V. & Cuevas, J. Artificial pollination in tree crop production. Horticult. Rev. 2, 2 (2008).

    Google Scholar 

  • 18.

    Corbet, S. A., Beament, J. & Eisikowitch, D. Are electrostatic forces involved in pollen transfer?. Plant Cell Environ. 5, 125–129 (1982).

    Article 

    Google Scholar 

  • 19.

    Inouye, D. W., Larson, B. M., Ssymank, A. & Kevan, P. G. Flies and flowers III: Ecology of foraging and pollination. J. Pollin. Ecol. 16, 115–133 (2015).

    Article 

    Google Scholar 

  • 20.

    Kanstrup, J. & Olesen, J. M. Plant-flower visitor interactions in a neotropical rain forest canopy: Community structure and generalisation level. The Scand. Assoc. Pollin. Ecol. honours knut Fægri 2, 33–42 (2000).

    Google Scholar 

  • 21.

    Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).

    Article 

    Google Scholar 

  • 22.

    Sakurai, A. & Takahashi, K. Flowering phenology and reproduction of the Solidago virgaurea L. complex along an elevational gradient on M t N orikura, central Japan. Plant Sp. Biol. 32, 270–278 (2017).

    Article 

    Google Scholar 

  • 23.

    Forup, M. L., Henson, K. S., Craze, P. G. & Memmott, J. The restoration of ecological interactions: Plant–pollinator networks on ancient and restored heathlands. J. Appl. Ecol. 45, 742–752 (2008).

    Article 

    Google Scholar 

  • 24.

    Solomon, M. & Kendall, D. Pollination by the syrphid fly, Eristalis tenax. (1970).

  • 25.

    Kendall, D., Wilson, D., Guttridge, C. & Anderson, H. Testing Eristalis as a pollinator of covered crops. Long Ashton Res. Stn. Rep. 1971, 120–121 (1971).

    Google Scholar 

  • 26.

    Ohsawa, R. & Namai, H. The effect of insect pollinators on pollination and seed setting in Brassica campestris cv. Nozawana and Brassica juncea cv Kikarashina. Jpn. J. Breed. 37, 453–463 (1987).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Jauker, F. & Wolters, V. Hover flies are efficient pollinators of oilseed rape. Oecologia 156, 819–823 (2008).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 46, 1080–1087 (2009).

    Article 

    Google Scholar 

  • 29.

    Kalmijn, A. J. The electric sense of sharks and rays. J. Exp. Biol. 55, 371–383 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Clarke, D., Morley, E. & Robert, D. The bee, the flower, and the electric field: Electric ecology and aerial electroreception. J. Comp. Physiol. A. 203, 737–748 (2017).

    Article 

    Google Scholar 

  • 31.

    Greggers, U. et al. Reception and learning of electric fields in bees. Proc. R. Soc. B Biol. Sci. 280, 20130528 (2013).

    Article 

    Google Scholar 

  • 32.

    Casas, J. & Dangles, O. Physical ecology of fluid flow sensing in arthropods. Annu. Rev. Entomol. 55, 505–520 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Tautz, J. & Rostás, M. Honeybee buzz attenuates plant damage by caterpillars. Curr. Biol. 18, R1125–R1126 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Bathellier, B., Steinmann, T., Barth, F. G. & Casas, J. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency. J. R. Soc. Interface 9, 1131–1143 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Newland, P. L. et al. Static electric field detection and behavioural avoidance in cockroaches. J. Exp. Biol. 211, 3682–3690 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Sutton, G. P., Clarke, D., Morley, E. L. & Robert, D. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. 113, 7261–7265 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Wędzony, M. & Filek, M. Changes of electric potential in pistils of Petunia hybrida Hort. and Brassica napus L. during pollination. Acta Physiol. Plantarum 20, 291–297 (1998).

    Article 

    Google Scholar 

  • 38.

    Stout, J. C. & Goulson, D. The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Anim. Behav. 62, 183–189 (2001).

    Article 

    Google Scholar 

  • 39.

    Weiss, M. R. Floral color change: A widespread functional convergence. Am. J. Bot. 82, 167–185 (1995).

    Article 

    Google Scholar 

  • 40.

    Waser, N. M. & Price, M. V. Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii. Nature 302, 422 (1983).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Shimozawa, T., Murakami, J. & Kumagai, T. Sensors and Sensing in Biology and Engineering 145–157 (Springer, 2003).

    Book 

    Google Scholar 

  • 42.

    Khan, S. & Hanif, H. Diversity and fauna of hoverflies (Syrphidae) in Chakwal, Pakistan. Int. J of Zool. Stud. 1, 22–23 (2016).

    Google Scholar 

  • 43.

    Khan, S. A. & Hanif, H. First record and redescription of Cheilosia albipila syrphid flies from Punjab, Pakistan. Int. J. Zool. Res. 1, 2 (2016).

    Google Scholar 

  • 44.

    Shehzad, A. et al. Faunistic study of hover flies (Diptera: Syrphidae) of Pakistan. Orient. Insects 51, 197–220 (2017).

    Article 

    Google Scholar 

  • 45.

    Nicholas, S., Thyselius, M., Holden, M. & Nordström, K. Rearing and long-term maintenance of eristalis tenax hoverflies for research studies. JoVE https://doi.org/10.3791/57711 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Gilbert, F. S. Foraging ecology of hoverflies: Morphology of the mouthparts in relation to feeding on nectar and pollen in some urban species. Ecol. Entomol. 2, 2 (1981).

    Google Scholar 

  • 47.

    Nicholas, S., Thyselius, M., Holden, M. & Nordström, K. Rearing and long-term maintenance of Eristalis tenax hoverflies for research studies. J. Vis. Exp. JoVE 2, 2 (2018).

    Google Scholar 

  • 48.

    Hogg, B. N., Bugg, R. L. & Daane, K. M. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol. Control 56, 76–84 (2011).

    Article 

    Google Scholar 

  • 49.

    McGonigle, D. F., Jackson, C. W. & Davidson, J. L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrostat. 54, 167–177 (2002).

    Article 

    Google Scholar 

  • 50.

    Koh, K., Montgomery, C., Clarke, D., Morley, E. & Robert, D. in Journal of Physics: Conference Series. 012001 (IOP Publishing).

  • 51.

    Rycroft, M., Israelsson, S. & Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Solar Terr. Phys. 62, 1563–1576 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Whitney, H. M., Dyer, A., Chittka, L., Rands, S. A. & Glover, B. J. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften 95, 845–850 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Stanković, B. & Davies, E. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett. 390, 275–279 (1996).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Crossing disciplines, adding fresh eyes to nuclear engineering

    Predicting building emissions across the US