in

Electric field detection as floral cue in hoverfly pollination

  • 1.

    Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Raguso, R. A. Flowers as sensory billboards: Progress towards an integrated understanding of floral advertisement. Curr. Opin. Plant Biol. 7, 434–440 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Goulson, D., Stout, J. C. & Hawson, S. A. Can flower constancy in nectaring butterflies be explained by Darwin’s interference hypothesis?. Oecologia 112, 225–231 (1997).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Goulson, D. & Wright, N. P. Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behav. Ecol. 9, 213–219 (1998).

    Article 

    Google Scholar 

  • 5.

    Von Arx, M., Goyret, J., Davidowitz, G. & Raguso, R. A. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths. Proc. Natl. Acad. Sci. 109, 9471–9476 (2012).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Leonard, A. S., Dornhaus, A. & Papaj, D. R. Forget-me-not: Complex floral displays, inter-signal interactions, and pollinator cognition. Curr. Zool. 57, 215–224 (2011).

    Article 

    Google Scholar 

  • 7.

    Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B. & Eisikowitch, D. The role of electrostatic forces in pollination. Plant Syst. Evol. 222, 133–142. https://doi.org/10.1007/bf00984099 (2000).

    Article 

    Google Scholar 

  • 8.

    Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination—Part 2: Simulations of pollen capture. Atmos. Environ. 41, 1596–1603 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Erickson, E. Surface electric potentials on worker honeybees leaving and entering the hive. J. Apic. Res. 14, 141–147 (1975).

    Article 

    Google Scholar 

  • 10.

    Edwards, D. Electrostatic charges on insects due to contact with different substrates. Can. J. Zool. 40, 579–584 (1962).

    Article 

    Google Scholar 

  • 11.

    Vaknin, Y., Gan-Mor, S., Bechar, A., Ronen, B. & Eisikowitch, D. Pollen and Pollination 133–142 (Springer, 2000).

    Book 

    Google Scholar 

  • 12.

    Eskov, E. & Sapozhnikov, A. Mechanism of generation and perception of electric fields by honey bees. Biofizika 21, 1097–1102 (1976).

    CAS 

    Google Scholar 

  • 13.

    Clarke, D., Whitney, H., Sutton, G. & Robert, D. Detection and learning of floral electric fields by bumblebees. Science 340, 66–69 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination—Part 1: Measurement of the electrostatic charge on pollen. Atmos. Environ. 41, 1587–1595 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Gan-Mor, S., Schwartz, Y., Bechar, A., Eisikowitch, D. & Manor, G. Relevance of electrostatic forces in natural and artificial pollination. Can. Agric. Eng. 37, 189–194 (1995).

    Google Scholar 

  • 16.

    Colin, M., Richard, D. & Chauzy, S. Measurement of electric charges carried by bees: Evidence of biological variations. J. Bioelectr. 10, 17–32 (1991).

    Article 

    Google Scholar 

  • 17.

    Pinillos, V. & Cuevas, J. Artificial pollination in tree crop production. Horticult. Rev. 2, 2 (2008).

    Google Scholar 

  • 18.

    Corbet, S. A., Beament, J. & Eisikowitch, D. Are electrostatic forces involved in pollen transfer?. Plant Cell Environ. 5, 125–129 (1982).

    Article 

    Google Scholar 

  • 19.

    Inouye, D. W., Larson, B. M., Ssymank, A. & Kevan, P. G. Flies and flowers III: Ecology of foraging and pollination. J. Pollin. Ecol. 16, 115–133 (2015).

    Article 

    Google Scholar 

  • 20.

    Kanstrup, J. & Olesen, J. M. Plant-flower visitor interactions in a neotropical rain forest canopy: Community structure and generalisation level. The Scand. Assoc. Pollin. Ecol. honours knut Fægri 2, 33–42 (2000).

    Google Scholar 

  • 21.

    Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).

    Article 

    Google Scholar 

  • 22.

    Sakurai, A. & Takahashi, K. Flowering phenology and reproduction of the Solidago virgaurea L. complex along an elevational gradient on M t N orikura, central Japan. Plant Sp. Biol. 32, 270–278 (2017).

    Article 

    Google Scholar 

  • 23.

    Forup, M. L., Henson, K. S., Craze, P. G. & Memmott, J. The restoration of ecological interactions: Plant–pollinator networks on ancient and restored heathlands. J. Appl. Ecol. 45, 742–752 (2008).

    Article 

    Google Scholar 

  • 24.

    Solomon, M. & Kendall, D. Pollination by the syrphid fly, Eristalis tenax. (1970).

  • 25.

    Kendall, D., Wilson, D., Guttridge, C. & Anderson, H. Testing Eristalis as a pollinator of covered crops. Long Ashton Res. Stn. Rep. 1971, 120–121 (1971).

    Google Scholar 

  • 26.

    Ohsawa, R. & Namai, H. The effect of insect pollinators on pollination and seed setting in Brassica campestris cv. Nozawana and Brassica juncea cv Kikarashina. Jpn. J. Breed. 37, 453–463 (1987).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Jauker, F. & Wolters, V. Hover flies are efficient pollinators of oilseed rape. Oecologia 156, 819–823 (2008).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 46, 1080–1087 (2009).

    Article 

    Google Scholar 

  • 29.

    Kalmijn, A. J. The electric sense of sharks and rays. J. Exp. Biol. 55, 371–383 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Clarke, D., Morley, E. & Robert, D. The bee, the flower, and the electric field: Electric ecology and aerial electroreception. J. Comp. Physiol. A. 203, 737–748 (2017).

    Article 

    Google Scholar 

  • 31.

    Greggers, U. et al. Reception and learning of electric fields in bees. Proc. R. Soc. B Biol. Sci. 280, 20130528 (2013).

    Article 

    Google Scholar 

  • 32.

    Casas, J. & Dangles, O. Physical ecology of fluid flow sensing in arthropods. Annu. Rev. Entomol. 55, 505–520 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Tautz, J. & Rostás, M. Honeybee buzz attenuates plant damage by caterpillars. Curr. Biol. 18, R1125–R1126 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Bathellier, B., Steinmann, T., Barth, F. G. & Casas, J. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency. J. R. Soc. Interface 9, 1131–1143 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Newland, P. L. et al. Static electric field detection and behavioural avoidance in cockroaches. J. Exp. Biol. 211, 3682–3690 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Sutton, G. P., Clarke, D., Morley, E. L. & Robert, D. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. 113, 7261–7265 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Wędzony, M. & Filek, M. Changes of electric potential in pistils of Petunia hybrida Hort. and Brassica napus L. during pollination. Acta Physiol. Plantarum 20, 291–297 (1998).

    Article 

    Google Scholar 

  • 38.

    Stout, J. C. & Goulson, D. The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Anim. Behav. 62, 183–189 (2001).

    Article 

    Google Scholar 

  • 39.

    Weiss, M. R. Floral color change: A widespread functional convergence. Am. J. Bot. 82, 167–185 (1995).

    Article 

    Google Scholar 

  • 40.

    Waser, N. M. & Price, M. V. Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii. Nature 302, 422 (1983).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Shimozawa, T., Murakami, J. & Kumagai, T. Sensors and Sensing in Biology and Engineering 145–157 (Springer, 2003).

    Book 

    Google Scholar 

  • 42.

    Khan, S. & Hanif, H. Diversity and fauna of hoverflies (Syrphidae) in Chakwal, Pakistan. Int. J of Zool. Stud. 1, 22–23 (2016).

    Google Scholar 

  • 43.

    Khan, S. A. & Hanif, H. First record and redescription of Cheilosia albipila syrphid flies from Punjab, Pakistan. Int. J. Zool. Res. 1, 2 (2016).

    Google Scholar 

  • 44.

    Shehzad, A. et al. Faunistic study of hover flies (Diptera: Syrphidae) of Pakistan. Orient. Insects 51, 197–220 (2017).

    Article 

    Google Scholar 

  • 45.

    Nicholas, S., Thyselius, M., Holden, M. & Nordström, K. Rearing and long-term maintenance of eristalis tenax hoverflies for research studies. JoVE https://doi.org/10.3791/57711 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Gilbert, F. S. Foraging ecology of hoverflies: Morphology of the mouthparts in relation to feeding on nectar and pollen in some urban species. Ecol. Entomol. 2, 2 (1981).

    Google Scholar 

  • 47.

    Nicholas, S., Thyselius, M., Holden, M. & Nordström, K. Rearing and long-term maintenance of Eristalis tenax hoverflies for research studies. J. Vis. Exp. JoVE 2, 2 (2018).

    Google Scholar 

  • 48.

    Hogg, B. N., Bugg, R. L. & Daane, K. M. Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol. Control 56, 76–84 (2011).

    Article 

    Google Scholar 

  • 49.

    McGonigle, D. F., Jackson, C. W. & Davidson, J. L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrostat. 54, 167–177 (2002).

    Article 

    Google Scholar 

  • 50.

    Koh, K., Montgomery, C., Clarke, D., Morley, E. & Robert, D. in Journal of Physics: Conference Series. 012001 (IOP Publishing).

  • 51.

    Rycroft, M., Israelsson, S. & Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Solar Terr. Phys. 62, 1563–1576 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Whitney, H. M., Dyer, A., Chittka, L., Rands, S. A. & Glover, B. J. The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften 95, 845–850 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Stanković, B. & Davies, E. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett. 390, 275–279 (1996).

    PubMed 
    Article 

    Google Scholar 

  • Presence and biodistribution of perfluorooctanoic acid (PFOA) in Paracentrotus lividus highlight its potential application for environmental biomonitoring

    The macronuclear genome of the Antarctic psychrophilic marine ciliate Euplotes focardii reveals new insights on molecular cold adaptation