in

Heterothermy as a mechanism to offset energetic costs of environmental and homeostatic perturbations

  • 1.

    Wingfield, J. C., Vleck, C. M. & Moore, M. C. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J. Exp. Zool. 264, 419–428 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Lind, J. & Cresswell, W. Determining the fitness consequences of antipredation behavior. Behav. Ecol. 16, 945–956 (2005).

    Article 

    Google Scholar 

  • 4.

    Boyles, J. G., Smit, B. & McKechnie, A. E. A new comparative metric for estimating heterothermy in endotherms. Physiol. Biochem. Zool. 84, 115–123 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039 (2013).

    Article 

    Google Scholar 

  • 6.

    Canale, C. I., Levesque, D. L. & Lovegrove, B. G. Tropical heterothermy: Does the exception prove the rule or force a re-definition? In Living in a Seasonal World: Thermoregulatory and Metabolic adaptations (eds Ruf, T. et al.) 29–40 (Springer, Berlin, 2012).

    Chapter 

    Google Scholar 

  • 7.

    Dammhahn, M., Landry-Cuerrier, M., Réale, D., Garant, D. & Humphries, M. M. Individual variation in energy-saving heterothermy affects survival and reproductive success. Funct. Ecol. 31, 866–875 (2017).

    Article 

    Google Scholar 

  • 8.

    McGuire, L. P., Jonasson, K. A. & Guglielmo, C. G. Bats on a budget: Torpor-assisted migration saves time and energy. PLoS ONE 9, e115724 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Glazier, D. S. Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Funct. Ecol. 23, 963–968 (2009).

    Article 

    Google Scholar 

  • 10.

    Turbill, C. & Stojanovski, L. Torpor reduces predation risk by compensating for the energetic cost of antipredator foraging behaviours. Proc. R. Soc. B Biol. Sci. 285, 1–9 (2018).

    Google Scholar 

  • 11.

    Angilletta, M. J., Cooper, B. S., Schuler, M. S. & Boyles, J. G. The evolution of thermal physiology in endotherms. Front. Biosci. 2, 861–881 (2010).

    Google Scholar 

  • 12.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).

    Book 

    Google Scholar 

  • 13.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34, 2292–2301 (2020).

    Article 

    Google Scholar 

  • 15.

    Humphries, M. M. & Careau, V. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr. Comp. Biol. 51, 419–431 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Daly, M., Behrends, P. R., Wilson, M. I. & Jacobs, L. F. Behavioural modulation of predation risk: Moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim. Behav. 44, 1–9 (1992).

    Article 

    Google Scholar 

  • 17.

    Price, M. V., Waser, N. M. & Bass, T. A. Effects of moonlight on microhabitat use by desert rodents. J. Mammal. 65, 353–356 (1984).

    Article 

    Google Scholar 

  • 18.

    Roschlau, C. & Scheibler, E. Foraging behaviour of a desert rodent community: Habitat or moon—Which is more influential?. Ethol. Ecol. Evol. 28, 394–413 (2016).

    Article 

    Google Scholar 

  • 19.

    Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).

    Google Scholar 

  • 20.

    Gutman, R., Dayan, T., Levy, O., Schubert, I. & Kronfeld-Schor, N. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice. PLoS ONE 6, 35–38 (2011).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Upham, N. S. & Hafner, J. C. Do nocturnal rodents in the great basin desert avoid moonlight?. J. Mammal. 94, 59–72 (2013).

    Article 

    Google Scholar 

  • 22.

    Price, M. V. Structure of desert rodent communities: A critical review of questions and approaches. Integr. Comp. Biol. 26, 39–49 (1986).

    Google Scholar 

  • 23.

    Bennett, A. M. et al. Acute changes in whole body corticosterone in response to perceived predation risk: A mechanism for anti-predator behavior in anurans? Gen. Comp. Endocrinol. 229, 62–66 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Hernández, M. C., Navarro-Castilla, Á., Planillo, A., Sánchez-González, B. & Barja, I. The landscape of fear: Why some free-ranging rodents choose repeated live-trapping over predation risk and how it is associated with the physiological stress response. Behav. Process. 157, 125–132 (2018).

    Article 

    Google Scholar 

  • 25.

    Thaker, M., Lima, S. L. & Hews, D. K. Acute corticosterone elevation enhances antipredator behaviors in male tree lizard morphs. Horm. Behav. 56, 51–57 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Mitra, R. & Sapolsky, R. M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. 105, 5573–5578 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Schroder, G. D. Foraging behavior and home range utilization of the bannertial kangaroo rat (Dipodomys spectabilis). Ecology 60, 657–665 (1979).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Andersen, M. C. & Kay, F. R. Banner-tailed kangaroo rat burrow mounds and desert grassland habitats. J. Arid Environ. 41, 147–160 (1999).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Harris, J. H. An experimental analysis of desert rodent foraging ecology. Ecology 65, 1579–1584 (1984).

    Article 

    Google Scholar 

  • 31.

    Lockard, R. B. Seasonal change in the activity pattern of Dipodomys spectabilis. J. Mammal. 59, 563–568 (1978).

    Article 

    Google Scholar 

  • 32.

    Lockard, R. B. & Owings, D. H. Seasonal variation in moonlight avoidance by bannertail kangaroo rats. J. Mammal. 55, 189–193 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Dawson, W. R. The relaxation of oxygen consumption to temperature in desert rodents. J. Mammal. 36, 543–553 (1955).

    Article 

    Google Scholar 

  • 34.

    Hart, J. S. Rodents. In Mammals. 1–149 (Academic Press, 1971).

  • 35.

    Quispe, R., Trappschuh, M., Gahr, M. & Goymann, W. Towards more physiological manipulations of hormones in field studies: Comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax. Gen. Comp. Endocrinol. 212, 100–105 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Sahores, A. et al. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS ONE 8, e64049 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Sopinka, N. M. et al. Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conserv. Physiol. 3, cov031 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Akana, S. F. et al. Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology 131, 585–594 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Bush, V. L., Middlemiss, D. N., Marsden, C. A. & Fone, K. C. F. Implantation of a slow release rorticosterone pellet induces long-term alterations in serotonergic neurochemistry in the rat brain. J. Neuroendocrinol. 15, 607–613 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Meyer, J. S., Micco, D. J., Stephenson, B. S., Krey, L. C. & McEwen, B. S. Subcutaneous implantation method for chronic glucocorticoid replacement therapy. Physiol. Behav. 22, 867–870 (1979).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Chang, C. C. & Kincl, F. A. Sustained release hormonal preparations: 3. Biological effectiveness of 6-methyl-1717α-acetoxypregna-4,6-diene-3,20-dione. Steroids 12, 689–696 (1968).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Kratochvíl, P., Benagiano, G. & Kincl, F. A. Sustained release hormonal preparations. 6. Permeability constant of various steroids. Steroids 15, 505–511 (1970).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Nash, H. A., Robertson, D. N., Moo Young, A. J. & Atkinson, L. E. Steroid release from silastic capsules and rods. Contraception 18, 367–394 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Borrow, A. P. et al. Chronic variable stress alters hypothalamic–pituitary–adrenal axis function in the female mouse. Physiol. Behav. 209, 112613 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Lajud, N., Roque, A., Cajero, M., Gutiérrez-Ospina, G. & Torner, L. Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 37, 410–420 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Mateo, J. M. & Cavigelli, S. A. A validation of extraction methods for noninvasive sampling of glucocorticoids in free-living ground squirrels. Physiol. Biochem. Zool. 78, 1069–1084 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Touma, C., Palme, R. & Sachser, N. Analyzing corticosterone metabolites in fecal samples of mice: A noninvasive technique to monitor stress hormones. Horm. Behav. 45, 10–22 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Torres-Medina, F. et al. Corticosterone implants produce stress-hyporesponsive birds. J. Exp. Biol. 221, jeb173864 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Adzic, M. et al. Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J. Endocrinol. 202, 87–97 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Ellis, M. V. Development of a compact system for field euthanasia of small mammals. J. Mammal. 98, 1211–1214 (2017).

    Article 

    Google Scholar 

  • 51.

    Guglielmo, C. G., McGuire, L. P., Gerson, A. R. & Seewagen, C. L. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75 (2011).

    Article 

    Google Scholar 

  • 52.

    McGuire, L. P. & Guglielmo, C. G. Quantitative magnetic resonance: A rapid, noninvasive body composition analysis technique for live and salvaged bats. J. Mammal. 91, 1375–1380 (2010).

    Article 

    Google Scholar 

  • 53.

    Warner, D. A., Johnson, M. S. & Nagy, T. R. Validation of body condition indices and quantitative magnetic resonance in estimating body composition in a small lizard. J. Exp. Zool. Part A Ecol. Genet. Physiol. 325, 588–597 (2016).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Boyles, J. G. A brief introduction to methods for describing body temperature in endotherms. Physiol. Biochem. Zool. 92, 365–372 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Monson, G. & Kessler, W. Life history notes on the banner-tailed kangaroo rat, Merriam’s kangaroo rat, and the white-throated wood rat in Arizona and New Mexico. J. Wildl. Manag. 4, 37–43 (1940).

    Article 

    Google Scholar 

  • 56.

    Smit, B., Boyles, J. G., Brigham, R. M. & Mckechnie, A. E. Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. J. Biol. Rhythms 26, 241–248 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Kay, F. R. & Whitford, W. G. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in southcentral New Mexico. Am. Midl. Nat. 99, 270–279 (1978).

    Article 

    Google Scholar 

  • 58.

    Randall, J. A. Territorial-defense interactions with neighbors and strangers in banner-tailed kangaroo rats. J. Mammal. 70, 308–315 (1989).

    Article 

    Google Scholar 

  • 59.

    Randall, J. A. Mating strategies of a nocturnal, desert rodent (Dipodomys spectabilis). Behav. Ecol. Sociobiol. 28, 215–220 (1991).

    Article 

    Google Scholar 

  • 60.

    Ward, D. W. & Randall, J. A. Territorial defense in the bannertail kangaroo rat (Dipodomys spectabilis): footdrumming and visual threats. Behav. Ecol. Sociobiol. 20, 323–328 (1987).

    Article 

    Google Scholar 

  • 61.

    Brown, J. S., Kotler, B. P., Smith, R. J. & Wirtz, W. O. The effects of owl predation on the foraging behavior of heteromyid rodents. Oecologia 76, 408–415 (1988).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Navarro-Castilla, Á., Barja, I. & Díaz, M. Foraging, feeding, and physiological stress responses of wild wood mice to increased illumination and common genet cues. Curr. Zool. 64, 409–417 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Sargunaraj, F., Kotler, B. P., Juliana, J. R. S. & Wielebnowski, N. Stress as an adaptation II: Does experimental cortisol supplementation affect predation risk assessment in foraging gerbils?. Evol. Ecol. Res. 18, 587–598 (2017).

    Google Scholar 

  • 64.

    Voellmy, I. K., Goncalves, I. B., Barrette, M. F., Monfort, S. L. & Manser, M. B. Mean fecal glucocorticoid metabolites are associated with vigilance, whereas immediate cortisol levels better reflect acute anti-predator responses in meerkats. Horm. Behav. 66, 759–765 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Kotler, B. P., Brown, J., Mukherjee, S., Berger-Tal, O. & Bouskila, A. Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc. R. Soc. B Biol. Sci. 277, 1469–1474 (2010).

    Article 

    Google Scholar 

  • 66.

    Pravosudov, V. V. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory. Proc. R. Soc. B Biol. Sci. 270, 2599–2604 (2003).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Humphries, M. M., Kramer, D. L. & Thomas, D. W. The role of energy availability in mammalian hibernation: An experimental test in free-ranging eastern chipmunks. Physiol. Biochem. Zool. 76, 165–179 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Munro, D., Thomas, D. W. & Humphries, M. M. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. J. Anim. Ecol. 74, 692–700 (2005).

    Article 

    Google Scholar 

  • 70.

    Ernest, S. K. M. et al. Rodents, plants, and precipitation: Spatial and temporal dynamics of consumers and resources. Oikos 88, 470–482 (2017).

    Article 

    Google Scholar 

  • 71.

    Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology 91, 1628–1638 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Warne, R. W., Baer, S. G. & Boyles, J. G. Community physiological ecology. Trends Ecol. Evol. 34, 510–518 (2019).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

    Dynamic carbon flux network of a diverse marine microbial community