Wingfield, J. C., Vleck, C. M. & Moore, M. C. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J. Exp. Zool. 264, 419–428 (1992).
Google Scholar
Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108 (2004).
Google Scholar
Lind, J. & Cresswell, W. Determining the fitness consequences of antipredation behavior. Behav. Ecol. 16, 945–956 (2005).
Google Scholar
Boyles, J. G., Smit, B. & McKechnie, A. E. A new comparative metric for estimating heterothermy in endotherms. Physiol. Biochem. Zool. 84, 115–123 (2011).
Google Scholar
Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039 (2013).
Google Scholar
Canale, C. I., Levesque, D. L. & Lovegrove, B. G. Tropical heterothermy: Does the exception prove the rule or force a re-definition? In Living in a Seasonal World: Thermoregulatory and Metabolic adaptations (eds Ruf, T. et al.) 29–40 (Springer, Berlin, 2012).
Google Scholar
Dammhahn, M., Landry-Cuerrier, M., Réale, D., Garant, D. & Humphries, M. M. Individual variation in energy-saving heterothermy affects survival and reproductive success. Funct. Ecol. 31, 866–875 (2017).
Google Scholar
McGuire, L. P., Jonasson, K. A. & Guglielmo, C. G. Bats on a budget: Torpor-assisted migration saves time and energy. PLoS ONE 9, e115724 (2014).
Google Scholar
Glazier, D. S. Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Funct. Ecol. 23, 963–968 (2009).
Google Scholar
Turbill, C. & Stojanovski, L. Torpor reduces predation risk by compensating for the energetic cost of antipredator foraging behaviours. Proc. R. Soc. B Biol. Sci. 285, 1–9 (2018).
Angilletta, M. J., Cooper, B. S., Schuler, M. S. & Boyles, J. G. The evolution of thermal physiology in endotherms. Front. Biosci. 2, 861–881 (2010).
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
Google Scholar
Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34, 2292–2301 (2020).
Google Scholar
Humphries, M. M. & Careau, V. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr. Comp. Biol. 51, 419–431 (2011).
Google Scholar
Daly, M., Behrends, P. R., Wilson, M. I. & Jacobs, L. F. Behavioural modulation of predation risk: Moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim. Behav. 44, 1–9 (1992).
Google Scholar
Price, M. V., Waser, N. M. & Bass, T. A. Effects of moonlight on microhabitat use by desert rodents. J. Mammal. 65, 353–356 (1984).
Google Scholar
Roschlau, C. & Scheibler, E. Foraging behaviour of a desert rodent community: Habitat or moon—Which is more influential?. Ethol. Ecol. Evol. 28, 394–413 (2016).
Google Scholar
Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).
Gutman, R., Dayan, T., Levy, O., Schubert, I. & Kronfeld-Schor, N. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice. PLoS ONE 6, 35–38 (2011).
Google Scholar
Upham, N. S. & Hafner, J. C. Do nocturnal rodents in the great basin desert avoid moonlight?. J. Mammal. 94, 59–72 (2013).
Google Scholar
Price, M. V. Structure of desert rodent communities: A critical review of questions and approaches. Integr. Comp. Biol. 26, 39–49 (1986).
Bennett, A. M. et al. Acute changes in whole body corticosterone in response to perceived predation risk: A mechanism for anti-predator behavior in anurans? Gen. Comp. Endocrinol. 229, 62–66 (2016).
Google Scholar
Hernández, M. C., Navarro-Castilla, Á., Planillo, A., Sánchez-González, B. & Barja, I. The landscape of fear: Why some free-ranging rodents choose repeated live-trapping over predation risk and how it is associated with the physiological stress response. Behav. Process. 157, 125–132 (2018).
Google Scholar
Thaker, M., Lima, S. L. & Hews, D. K. Acute corticosterone elevation enhances antipredator behaviors in male tree lizard morphs. Horm. Behav. 56, 51–57 (2009).
Google Scholar
Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Preparative actions. Endocr. Rev. 21, 55–89 (2000).
Google Scholar
Mitra, R. & Sapolsky, R. M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. 105, 5573–5578 (2008).
Google Scholar
Schroder, G. D. Foraging behavior and home range utilization of the bannertial kangaroo rat (Dipodomys spectabilis). Ecology 60, 657–665 (1979).
Google Scholar
Andersen, M. C. & Kay, F. R. Banner-tailed kangaroo rat burrow mounds and desert grassland habitats. J. Arid Environ. 41, 147–160 (1999).
Google Scholar
Harris, J. H. An experimental analysis of desert rodent foraging ecology. Ecology 65, 1579–1584 (1984).
Google Scholar
Lockard, R. B. Seasonal change in the activity pattern of Dipodomys spectabilis. J. Mammal. 59, 563–568 (1978).
Google Scholar
Lockard, R. B. & Owings, D. H. Seasonal variation in moonlight avoidance by bannertail kangaroo rats. J. Mammal. 55, 189–193 (1974).
Google Scholar
Dawson, W. R. The relaxation of oxygen consumption to temperature in desert rodents. J. Mammal. 36, 543–553 (1955).
Google Scholar
Hart, J. S. Rodents. In Mammals. 1–149 (Academic Press, 1971).
Quispe, R., Trappschuh, M., Gahr, M. & Goymann, W. Towards more physiological manipulations of hormones in field studies: Comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax. Gen. Comp. Endocrinol. 212, 100–105 (2015).
Google Scholar
Sahores, A. et al. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS ONE 8, e64049 (2013).
Google Scholar
Sopinka, N. M. et al. Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conserv. Physiol. 3, cov031 (2015).
Google Scholar
Akana, S. F. et al. Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology 131, 585–594 (1992).
Google Scholar
Bush, V. L., Middlemiss, D. N., Marsden, C. A. & Fone, K. C. F. Implantation of a slow release rorticosterone pellet induces long-term alterations in serotonergic neurochemistry in the rat brain. J. Neuroendocrinol. 15, 607–613 (2003).
Google Scholar
Meyer, J. S., Micco, D. J., Stephenson, B. S., Krey, L. C. & McEwen, B. S. Subcutaneous implantation method for chronic glucocorticoid replacement therapy. Physiol. Behav. 22, 867–870 (1979).
Google Scholar
Chang, C. C. & Kincl, F. A. Sustained release hormonal preparations: 3. Biological effectiveness of 6-methyl-1717α-acetoxypregna-4,6-diene-3,20-dione. Steroids 12, 689–696 (1968).
Google Scholar
Kratochvíl, P., Benagiano, G. & Kincl, F. A. Sustained release hormonal preparations. 6. Permeability constant of various steroids. Steroids 15, 505–511 (1970).
Google Scholar
Nash, H. A., Robertson, D. N., Moo Young, A. J. & Atkinson, L. E. Steroid release from silastic capsules and rods. Contraception 18, 367–394 (1978).
Google Scholar
Borrow, A. P. et al. Chronic variable stress alters hypothalamic–pituitary–adrenal axis function in the female mouse. Physiol. Behav. 209, 112613 (2019).
Google Scholar
Lajud, N., Roque, A., Cajero, M., Gutiérrez-Ospina, G. & Torner, L. Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 37, 410–420 (2012).
Google Scholar
Mateo, J. M. & Cavigelli, S. A. A validation of extraction methods for noninvasive sampling of glucocorticoids in free-living ground squirrels. Physiol. Biochem. Zool. 78, 1069–1084 (2005).
Google Scholar
Touma, C., Palme, R. & Sachser, N. Analyzing corticosterone metabolites in fecal samples of mice: A noninvasive technique to monitor stress hormones. Horm. Behav. 45, 10–22 (2004).
Google Scholar
Torres-Medina, F. et al. Corticosterone implants produce stress-hyporesponsive birds. J. Exp. Biol. 221, jeb173864 (2018).
Google Scholar
Adzic, M. et al. Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J. Endocrinol. 202, 87–97 (2009).
Google Scholar
Ellis, M. V. Development of a compact system for field euthanasia of small mammals. J. Mammal. 98, 1211–1214 (2017).
Google Scholar
Guglielmo, C. G., McGuire, L. P., Gerson, A. R. & Seewagen, C. L. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75 (2011).
Google Scholar
McGuire, L. P. & Guglielmo, C. G. Quantitative magnetic resonance: A rapid, noninvasive body composition analysis technique for live and salvaged bats. J. Mammal. 91, 1375–1380 (2010).
Google Scholar
Warner, D. A., Johnson, M. S. & Nagy, T. R. Validation of body condition indices and quantitative magnetic resonance in estimating body composition in a small lizard. J. Exp. Zool. Part A Ecol. Genet. Physiol. 325, 588–597 (2016).
Google Scholar
Boyles, J. G. A brief introduction to methods for describing body temperature in endotherms. Physiol. Biochem. Zool. 92, 365–372 (2019).
Google Scholar
Monson, G. & Kessler, W. Life history notes on the banner-tailed kangaroo rat, Merriam’s kangaroo rat, and the white-throated wood rat in Arizona and New Mexico. J. Wildl. Manag. 4, 37–43 (1940).
Google Scholar
Smit, B., Boyles, J. G., Brigham, R. M. & Mckechnie, A. E. Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. J. Biol. Rhythms 26, 241–248 (2011).
Google Scholar
Kay, F. R. & Whitford, W. G. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in southcentral New Mexico. Am. Midl. Nat. 99, 270–279 (1978).
Google Scholar
Randall, J. A. Territorial-defense interactions with neighbors and strangers in banner-tailed kangaroo rats. J. Mammal. 70, 308–315 (1989).
Google Scholar
Randall, J. A. Mating strategies of a nocturnal, desert rodent (Dipodomys spectabilis). Behav. Ecol. Sociobiol. 28, 215–220 (1991).
Google Scholar
Ward, D. W. & Randall, J. A. Territorial defense in the bannertail kangaroo rat (Dipodomys spectabilis): footdrumming and visual threats. Behav. Ecol. Sociobiol. 20, 323–328 (1987).
Google Scholar
Brown, J. S., Kotler, B. P., Smith, R. J. & Wirtz, W. O. The effects of owl predation on the foraging behavior of heteromyid rodents. Oecologia 76, 408–415 (1988).
Google Scholar
Navarro-Castilla, Á., Barja, I. & Díaz, M. Foraging, feeding, and physiological stress responses of wild wood mice to increased illumination and common genet cues. Curr. Zool. 64, 409–417 (2018).
Google Scholar
Sargunaraj, F., Kotler, B. P., Juliana, J. R. S. & Wielebnowski, N. Stress as an adaptation II: Does experimental cortisol supplementation affect predation risk assessment in foraging gerbils?. Evol. Ecol. Res. 18, 587–598 (2017).
Voellmy, I. K., Goncalves, I. B., Barrette, M. F., Monfort, S. L. & Manser, M. B. Mean fecal glucocorticoid metabolites are associated with vigilance, whereas immediate cortisol levels better reflect acute anti-predator responses in meerkats. Horm. Behav. 66, 759–765 (2014).
Google Scholar
Kotler, B. P., Brown, J., Mukherjee, S., Berger-Tal, O. & Bouskila, A. Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc. R. Soc. B Biol. Sci. 277, 1469–1474 (2010).
Google Scholar
Pravosudov, V. V. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory. Proc. R. Soc. B Biol. Sci. 270, 2599–2604 (2003).
Google Scholar
Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).
Google Scholar
Humphries, M. M., Kramer, D. L. & Thomas, D. W. The role of energy availability in mammalian hibernation: An experimental test in free-ranging eastern chipmunks. Physiol. Biochem. Zool. 76, 165–179 (2003).
Google Scholar
Munro, D., Thomas, D. W. & Humphries, M. M. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. J. Anim. Ecol. 74, 692–700 (2005).
Google Scholar
Ernest, S. K. M. et al. Rodents, plants, and precipitation: Spatial and temporal dynamics of consumers and resources. Oikos 88, 470–482 (2017).
Google Scholar
Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology 91, 1628–1638 (2010).
Google Scholar
Warne, R. W., Baer, S. G. & Boyles, J. G. Community physiological ecology. Trends Ecol. Evol. 34, 510–518 (2019).
Google Scholar
Source: Ecology - nature.com