in

Metal bioaccumulation alleviates the negative effects of herbivory on plant growth

  • 1.

    Pollard, A. J., Reeves, R. & Baker, A. J. M. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 217–218, 8–17 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 2.

    Whiting, S. N. et al. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 12, 106–116 (2004).

    Article 

    Google Scholar 

  • 3.

    Baker, A. J. M. Accumulators and excluders—Strategies in the response of plants to heavy metals. J. Plant Nutr. 3, 643–654 (1981).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Ernest, W. H. O. Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol. 146, 357–358 (2000).

    Article 

    Google Scholar 

  • 5.

    Pollard, A. J., Powell, K. D., Harper, F. A. & Smith, J. A. C. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci. 21, 539–566 (2002).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Antosiewicz, D. M. Adaptation of plants to an environmental polluted with heavy metals. Acta Soc. Bot. Pol. 61, 281–299 (1992).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Brooks, R. R., Lee, J., Reeves, R. D. & JaVré, T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 7, 49–77 (1977).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Jansen, S., Broadley, M., Robbrecht, E. & Smets, E. Aluminium hyperaccumulation in angiosperms: A review of its phylogenetic signifficance. Bot. Rev. 68, 235–269 (2002).

    Article 

    Google Scholar 

  • 9.

    van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, J. & Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362, 319–334 (2013).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Metali, F., Salim, K. A. & Burslem, D. F. R. P. Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytol. 193, 637–649 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Noret, N., Meerts, P., Vanhaelen, M., Dos Santos, A. & Escarré, J. Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152, 92–100 (2007).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Martens, S. N. & Boyd, R. S. The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia 98, 379–384 (1994).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Boyd, R. S. & Martens, S. N. The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8, 1–7 (1998).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hanson, B. et al. Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol. 159, 461–469 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Sci. 180, 169–181 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Freeman, J. L., Garcia, D., Kim, D., Hopf, A. & Salt, D. E. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 137, 1082–1091 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Vesk, P. A. & Reichman, S. M. Hyperaccumulators and herbivores—A Bayesian meta-analysis of feeding choice trials. J. Chem. Ecol. 35, 289–296 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Pollard, A. J. & Baker, A. J. M. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol. 135, 655–658 (1997).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Ribeiro, S. P. & Brown, V. K. Insect herbivory in tree crowns of Tabebuia aurea and T. ochracea (Bignoniaceae): Contrasting the Brazilian Cerrado with the wetland Pantanal Matogrossense. Selbyana 20, 159–170 (1999).

    Google Scholar 

  • 20.

    Strauss, S. Y., Rudgers, J. A., Lau, J. A. & Irwin, R. E. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17, 278–285 (2002).

    Article 

    Google Scholar 

  • 21.

    Hossain, M. A., Piyatida, P., Teixeria da Silva, J. A. & Fujita, M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012, 01–37 (2012).

    Article 
    CAS 

    Google Scholar 

  • 22.

    McNaughton, S. J. Compensatory plant growth as a response to herbivory. Oikos 40, 329–336 (1983).

    Article 

    Google Scholar 

  • 23.

    Kozlov, M. V., Lanta, V., Zverev, V. E. & Zvereva, E. L. Delayed local responses of downy birch to damage by leafminers and leafrollers. Oikos 121, 428–434 (2012).

    Article 

    Google Scholar 

  • 24.

    Maestri, E., Marmiroli, M., Visioli, G. & Marmiroli, N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Bot. 68, 1–13 (2010).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Khan, A. et al. Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. Int. J. Environ. Sci. Technol. 16, 2295–2304 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Barceló, J. & Poschenrieder, C. Respuestas de las plantas a la contaminación por metales pesados. Suelo y Planta 2, 345–361 (1992).

    Google Scholar 

  • 27.

    Ribeiro, S. P. et al. Plant defense against leaf herbivory based on metal accumulation: Examples from a tropical high altitude ecosystem. Plant Spec. Biol. 32, 147–155 (2017).

    Article 

    Google Scholar 

  • 28.

    Boyd, R. S. & Martens, S. N. Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70, 21–25 (1994).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Boyd, R. S. & Jhee, E. M. A test of elemental defence against slugs by Ni in hyperaccumulator and non-hyperaccumulator Streptanthus species. Chemoecology 15, 179–185 (2005).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Freeman, J. L. et al. Selenium accumulation protects plants from herbivory by Orthoptera due to toxicity and deterrence. New Phytol. 175, 490–500 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Mathews, S., Ma, L. Q., Rathinasabapathi, C. & Stamps, R. H. Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L. Environ. Exp. Bot. 65, 282–286 (2009).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Coleman, C. M., Boyd, R. S. & Eubanks, M. D. Extending the elemental defense hypothesis: Dietary metal concentrations below hyperaccumulator levels could harm herbivores. J. Chem. Ecol. 31, 1669–1681 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Scheirs, J., Vandevyvere, I., Wollaert, K., Blust, R. & De Bruyn, L. Plant-mediated effects of heavy metal pollution on host choice of a grass miner. Environ. Pollut. 143, 138–145 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Boyd, R. S. The defence hypothesis of elemental hyperaccumulation: Status, challenges and new directions. Plant Soil 293, 53–176 (2007).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Porto, M. L. & Silva, M. F. F. Tipos de vegetação metalófila em áreas da Serra de Carajás e de Minas Gerais, Brasil. Acta Bot. Bras. 3, 13–21 (1989).

    Article 

    Google Scholar 

  • 36.

    Teixeira, W. A. & Lemos-Filho, J. P. Metais pesados em folhas de espécies lenhosas colonizadoras de uma área de mineração de ferro em Itabirito, Minas Gerais. Rev. Arvore 22, 381–388 (1998).

    Google Scholar 

  • 37.

    Lorenzi, H. Árvores Brasileiras: Manual De Identificação e Cultivo de Plantas Arbóreas Nativas Do Brasil Vol. 3 (Nova Odessa: Instituto Plantarum, 2009)

  • 38.

    Pérez, J. F. M. et al. Sistema de manejo para a candeia—Eremanthus erythropappus (DC.) Macleish—a opção do sistema de corte seletivo. Cerne 10, 257–273 (2004).

    Google Scholar 

  • 39.

    Keane, B., Collier, M., Shann, J. & Rogstad, S. Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci. Total Environ. 281, 63–78 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Assunção, A. G. L., Schat, H. & Aarts, M. G. M. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol. 159, 351–360 (2003).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 41.

    Basta, N. T., Ryan, J. A. & Chaney, R. L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 34, 49–63 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Evans, L. J. Chemistry of metal retention by soils—Several processes are explained. Environ. Sci. Technol. 23, 1046–1056 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Campos, N. B. Aptidão reprodutiva e estrutura da comunidade de um candeial com elevada mortalidade. Dissertation (Federal University of Ouro Preto, 2012).

  • 44.

    Pereira, J. A., Londe, V., Ribeiro, S. P. & De Sousa, H. C. Crown architecture and leaf anatomic traits influencing herbivory on Clethra scabra Pers.: Comparing adaptation to wetlands and drained habitats. Rev. Bras. Bot. 40, 481–490 (2017).

    Article 

    Google Scholar 

  • 45.

    Koslov, M. V., Zverev, V. & Zvereva, E. L. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring. Sci. Total Environ. 601–602, 802–811 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Mendes, G. & Cornelissen, T. G. Effects of plant quality and ant defence on herbivory rates in a neotropical ant-plant. Ecol. Entomol. 2017, 1–8 (2017).

    Google Scholar 

  • 47.

    Jhee, E. M., Boyd, R. S. & Eubanks, M. D. Effectiveness of metal-metal and metal-organic compund combinations against Plutella xylostella: Implications for plant elemental defense. J. Chem. Ecol. 32, 239–259 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Boyd, R. S. Plant defense using toxic inorganic ions: Conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci. 195, 88–95 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Bronstein, J. L. Conditional outcomes in mutualistic interactions. TREE 9, 214–217 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Monteiro, I., Viana-Junior, A. B., Solar, R. R. C., Neves, F. S. & DeSouza, O. Disturbance-modulated symbioses in termitophily. Ecol. Evol. 7, 10829–10838 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Trumble, J. T., Kolodnyhirsch, D. M. & Ting, I. P. Plant compensation for arthropod herbivory. Annu. Rev. Entomol. 38, 93–119 (1993).

    Article 

    Google Scholar 

  • 52.

    Stowe, K. A., Marquis, R. J., Hochwender, C. G. & Simms, E. L. The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 31, 565–595 (2000).

    Article 

    Google Scholar 

  • 53.

    Poveda, K., Steffan-Dewenter, I., Scheu, S. & Tscharntke, T. Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135, 601–605 (2003).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Tozer, K. N. et al. Growth responses of diploid and tetraploid perennial ryegrass (Lolium perenne) to soil-moisture deficit, defoliation and a root-feeding invertebrate. Crop Pasture Sci. 68, 632–642 (2017).

    Article 

    Google Scholar 

  • 55.

    Yuan, J., Wang, P. & Yang, Y. Effects of simulated herbivory on the vegetative reproduction and compensatory growth of Hordeum brevisubulatum at different ontogenic stages. Int. J. Environ. Res. Public Health 16, 1663 (2019).

    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Seneviratne, M. et al. Heavy metal induced oxidative stress on seed germination and seedling development: A critical review. Environ. Geochem. Health. 41, 1813–1831 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Poschenrieder, C., Tolrà, R. & Barceló, J. Can metals defend plants against biotic stress?. Trends Plant Sci. 11, 288–295 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Coleman, J. E. Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61, 897–946 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Jansen, S., Watanabe, T., Dessein, S., Smetes, E. & Robbrecht, E. A comparative study of metal levels in leaves of some Al-accumulating Rubiaceae. Ann. Bot. 91, 657–663 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Gall, J. E., Boyd, R. S. & Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Asses. 187, 1–21 (2015).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Poschenrieder, C., Gunsé, B., Corrales, I. & Barceló, J. A glance into aluminum toxicity and resistance in plants. Sci. Total. Environ. 400, 356–368 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Janssens, T. K. S., Roelofs, D. & Van Straalen, N. M. Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Sci. 16, 3–18 (2009).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Hodson, M. E. Effects of heavy metals and metalloids on soil organisms. In Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Environmental Pollution (ed Alloway, B. J.) Vol. 22, 141–160 (Springer, 2012).

  • 64.

    Rahman, M. et al. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. Int. J. Mol. Sci. 19, 1–28 (2018).

    ADS 

    Google Scholar 

  • 65.

    Kidd, P. S., Llugany, M., Poschenrieder, C., Gunsé, B. & Barceló, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52, 1339–1352 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 155, 155–160 (2009).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Grevenstuk, T. & Romano, A. Aluminium speciation and internal detoxification mechanisms in plants: Where do we stand?. Metallomics 5, 1584–1594 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Panda, S. K., Baluška, F. & Matsumoto, H. Aluminum stress signaling in plants. Plant Signal Behav. 4, 592–597 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Borgström, P., Bommarco, R., Viketoft, M. & Strengbom, J. Below-ground herbivory mitigates biomass loss from above-ground herbivory of nitrogen fertilized plants. Sci. Rep. 10, 12752 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1–18 (2017).

    Article 

    Google Scholar 

  • 71.

    Massad, T. J. Ontogenetic differences of herbivory on woody and herbaceous plants: A meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia 172, 1–10 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Messias, M. C. T. B. et al. Phanerogamic flora and vegetation of Itacolomi State Park, Minas Gerais, Brazil. Biota Neotrop. 17, 1–38 (2017).

    Article 

    Google Scholar 

  • 73.

    Peron, M. V. Listagem preliminar da flora fanerogâmica dos campos rupestres do Parque Estadual do Itacolomi–Ouro Preto/Mariana, MG. Rodriguésia 67, 63–69 (1989).

    Article 

    Google Scholar 

  • 74.

    Almeida, F. F. M. Províncias estruturais brasileiras. In SBG, Simpósio de Geologia do Nordeste, 8, Campina Grande, PB. Atas Campina Grande 363–391 (1977).

  • 75.

    Machado, N., Schrank, A., Noce, C. M. & Gauthier, G. Ages of detrital zircon from Archean-Paleoproterozoic sequences: Implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilatero Ferrifero, southeast Brazil. Earth Planet Sci. Lett. 141, 259–276 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 76.

    Ribeiro, S. P. & Basset, Y. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30, 663–672 (2007).

    Article 

    Google Scholar 

  • 77.

    Ribeiro, S. P. & Basset, Y. Effects of sclerophylly and host choice on gall densities and herbivory distribution in an Australian subtropical forest. Austral. Ecol. 441, 219–226 (2016).

    Article 

    Google Scholar 

  • 78.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 79.

    R Core Team. R: A Language and Environment for Statistical Computing (R Found Stat Comp, 2020) https://www.R-project.org/.


  • Source: Ecology - nature.com

    Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

    Dynamic carbon flux network of a diverse marine microbial community