in

Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish

  • 1.

    Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Grandjean, P. & Landrigan, P. J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13, 330–338 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Boix, J., Cauli, O. & Felipo, V. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats mechanisms involved. Neuroscience 167, 994–1003 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Boucher, O., Muckle, G. & Bastien, C. H. Prenatal exposure to polychlorinated biphenyls: a neuropsychologic analysis. Environ. Health Perspect. 117, 7–16 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Ennaceur, S., Gandoura, N. & Driss, M. R. Distribution of polychlorinated biphenyls and organochlorine pesticides in human breast milk from various locations in Tunisia: Levels of contamination, influencing factors, and infant risk assessment. Environ. Res. 108, 86–93 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Lancz, K. et al. Duration of breastfeeding and serum PCB 153 concentrations in children. Environ. Res. 136, 35–39 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Herbstman, J. B. et al. Determinants of prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in an urban population. Environ. Health Perspect. 115, 1794–1800 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Lancz, K. et al. Ratio of cord to maternal serum PCB concentrations in relation to their congener-specific physicochemical properties. Int J. Hyg. Env. Health 218, 91–98 (2015).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Bergonzi, R. et al. Distribution of persistent organochlorine pollutants in maternal and foetal tissues: data from an Italian polluted urban area. Chemosphere 76, 747–754 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Patel, J. F., Hartman, T. J., Sjodin, A., Northstone, K. & Taylor, E. V. Prenatal exposure to polychlorinated biphenyls and fetal growth in British girls. Environ. Int. 116, 116–121 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Rice, D. & Barone, S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 108, 511–533 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Trnovec, T. et al. Serum PCB concentrations and cochlear function in 12-year-old children. Environ. Sci. Technol. 44, 2884–2889 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Jusko, T. A. et al. Prenatal and postnatal serum PCB concentrations and cochlear function in children at 45 months of age. Environ. Health Perspect. 122, 1246–1252 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Ribas-Fitó, N., Sala, M., Kogevinas, M. & Sunyer, J. Polychlorinated biphenyls (PCBs) and neurological development in children: A systematic review. J. Epidemiol. Community Health 55, 537–546 (2001).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Walkowiak, J. et al. Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood. Lancet 358, 1602–1607 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Chen, Y.-C. J., Guo, Y.-L., Hsu, C.-C. & Rogan, W. J. Cognitive development of Yu-Cheng (‘Oil Disease’) children prenatally exposed to heat-degraded PCBs. JAMA 268, 3213 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Berger, D. F. et al. Hyperactivity and impulsiveness in rats fed diets supplemented with either Aroclor 1248 or PCB-contaminated St. Lawrence river fish. Behav. Brain Res. 126, 1–11 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Johansen, E. B. et al. Behavioral changes following PCB 153 exposure in the spontaneously hypertensive rat—an animal model of attention-deficit/hyperactivity disorder. Behav. Brain Funct. 10, 1–19 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Crofton, K. M., Ding, D.-L., Padich, R., Taylor, M. & Henderson, D. Hearing loss following exposure during development to polychlorinated biphenyls: a cochlear site of action. Hear. Res. 144, 196–204 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Goldey, E. S., Kehn, L. S., Lau, C., Rehnberg, G. L. & Crofton, K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol. Appl. Pharmacol. 135, 77–88 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Lilienthal, H., Korkalainen, M., Andersson, P. L. & Viluksela, M. Developmental exposure to purity-controlled polychlorinated biphenyl congeners (PCB74 and PCB95) in rats: Effects on brainstem auditory evoked potentials and catalepsy. Toxicology 327, 22–31 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Lilienthal, H., Heikkinen, P., Andersson, P. L., van der Ven, L. T. M. & Viluksela, M. Auditory effects of developmental exposure to purity-controlled polychlorinated biphenyls (PCB52 and PCB180) in rats. Toxicol. Sci. 122, 100–111 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Poon, E., Bandara, S. B., Allen, J. B., Sadowski, R. N. & Schantz, S. L. Developmental PCB exposure increases susceptibility to audiogenic seizures in adulthood. Neurotoxicology 46, 117–124 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A. V. Zebrafish models for translational neuroscience research: From tank to bedside. Trends Neurosci. 37, 264–278 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Fonnum, F. & Mariussen, E. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J. Neurochem. 111, 1327–1347 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Dervola, K. S. N., Johansen, E. B., Walaas, S. I. & Fonnum, F. Gender-dependent and genotype-sensitive monoaminergic changes induced by polychlorinated biphenyl 153 in the rat brain. Neurotoxicology 50, 38–45 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Campagna, R. et al. Cerebellum Proteomics addressing the cognitive deficit of rats perinatally exposed to the food-relevant polychlorinated biphenyl 138. Toxicol. Sci. 123, 170–179 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Enayah, S. H., Vanle, B. C., Fuortes, L. J., Doorn, J. A. & Ludewig, G. PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 394, 93–101 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Langeveld, W. T., Meijer, M. & Westerink, R. H. S. Differential effects of 20 non-dioxin-like PCBs on basal and depolarization-evoked intracellular calcium levels in PC12 cells. Toxicol. Sci. 126, 487–496 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Keil, K. P., Sethi, S. & Lein, P. J. Sex-dependent effects of 2,2′,3,5′,6-pentachlorobiphenyl on dendritic arborization of primary mouse neurons. Toxicol. Sci. 168, 95–109 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Pruitt, D. L., Meserve, L. A. & Bingman, V. P. Reduced growth of intra- and infra-pyramidal mossy fibers is produced by continuous exposure to polychlorinated biphenyl. Toxicology 138, 11–17 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Yang, D. et al. Developmental exposure to polychlorinated biphenyls interferes with experience-dependent dendritic plasticity and ryanodine receptor expression in weanling rats. Environ. Health Perspect. 117, 426–435 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Lein, P. J. et al. Ontogenetic alterations in molecular and structural correlates of dendritic growth after developmental exposure to polychlorinated biphenyls. Environ. Health Perspect. 115, 556–563 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Tropepe, V. & Sive, H. L. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes. Brain Behav. 2, 268–281 (2003).

    CAS 

    Google Scholar 

  • 35.

    Maximino, C. & Herculano, A. M. A review of monoaminergic neuropsychopharmacology in zebrafish. Zebrafish 7, 359–378 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Wolman, M. A. A. et al. A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron 85, 1200–1211 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Meserve Id, J. H. et al. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genet. 17, e1008943 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Voesenek, C. J., Muijres, F. T. & Van Leeuwen, J. L. Biomechanics of swimming in developing larval fish. J. Exp. Biol. 221, jeb149583 (2018).

  • 40.

    Roberts, A. Early functional organization of spinal neurons in developing lower vertebrates. Brain Res. Bull. 53, 585–593 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Liu, Y. C. & Hale, M. E. Local spinal cord circuits and bilateral mauthner cell activity function together to drive alternative startle behaviors. Curr. Biol. 27, 697–704 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Burgess, H. A. & Granato, M. Sensorimotor gating in larval zebrafish. J. Neurosci. 27, 4984–4994 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Troconis, E. L. et al. Intensity-dependent timing and precision of startle response latency in larval zebrafish. J. Physiol. 595, 265–282 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Smith, N. L. & Kimelman, D. Establishing the body plan: The first 24 h of zebrafish development. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications, https://doi.org/10.1016/B978-0-12-812431-4.00007-5 (Elsevier, 2019).

  • 45.

    Meyers, J. R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Tabor, K. M. et al. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J. Neurophysiol. 112, 834–844 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Jain, R. A. et al. A forward genetic screen in zebrafish identifies the G-protein-coupled receptor CaSR as a modulator of sensorimotor decision making. Curr. Biol. 28, 1357–1369.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Mariussen, E. & Fonnum, F. The effect of polychlorinated biphenyls on the high affinity uptake of the neurotransmitters, dopamine, serotonin, glutamate and GABA, into rat brain synaptosomes. Toxicology 159, 11–21 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Wigestrand, M. B., Stenberg, M., Walaas, S. I., Fonnum, F. & Andersson, P. L. Non-dioxin-like PCBs inhibit [3H]WIN-35,428 binding to the dopamine transporter: a structure–activity relationship study. Neurotoxicology 39, 18–24 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Oikonomou, G. et al. The serotonergic raphe promote sleep in zebrafish and mice. Neuron 103, 686–701.e8 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Fosque, B. F. et al. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Klocke, C. & Lein, P. J. Evidence implicating non-dioxin-like congeners as the key mediators of polychlorinated biphenyl (PCB) developmental neurotoxicity. Int. J. Mol. Sci. 21, 1013 (2020).

  • 53.

    Puel JL, Pujol R, Ladrech S, Eybalin M. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid electrophysiological and neurotoxic effects in the guinea-pig cochlea. Neuroscience. Nat. Rev. Neurosci. 45, 63–72. https://doi.org/10.1016/0306-4522(91)90103-u (1991).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Sebe JY, et al. Ca2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. J Neurosci. 37, 6162–6175. https://doi.org/10.1523/JNEUROSCI.3644-16.2017 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Coleman, M. Axon degeneration mechanisms: commonality amid diversity. Nat. Rev. Neurosci. 6, 889–898 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Lacoste, A. M. B. et al. A convergent and essential interneuron pathway for mauthner-cell-mediated escapes. Curr. Biol. 25, 1526–1534 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Kang, K. S., Wilson, M. R., Hayashi, T., Chang, C. C. & Trosko, J. E. Inhibition of gap junctional intercellular communication in normal human breast epithelial cells after treatment with pesticides, PCBs, and PBBs, alone or in mixtures. Environ. Health Perspect. 104, 192–200 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Bager, Y., Lindebro, M. C., Martel, P., Chaumontet, C. & Wärngård, L. Altered function, localization and phosphorylation of gap junctions in rat liver epithelial, IAR 20, cells after treatment with PCBs or TCDD. Environ. Toxicol. Pharmacol. 3, 257–266 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Machala, M. et al. Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: Inhibitory potencies and screening for potential mode(s) of action. Toxicol. Sci. 76, 187–195 (2003).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Nyffeler, J. et al. A structure–activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Arch. Toxicol. 92, 1225–1247 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Kang, K.-S., Park, J.-E., Ryu, D.-Y. & Lee, Y.-S. Effects and neuro-toxic mechanisms of 2,2’,4,4’,5,5’-hexachlorobiphenyl and endosulfan in neuronal stem cells. J. Vet. Med. Sci. 63, 1183–1190 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Aluru, N., Krick, K. S., Mcdonald, A. M. & Karchner, S. I. Developmental exposure to PCB153 (2,2′,4,4′,5,5′-hexachlorobiphenyl) alters circadian rhythms and the expression of clock and metabolic genes. Toxicol. Sci. 173, 41–52 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    GEO Accession viewer. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2450663 (2017).

  • 64.

    Serrano-Velez, J. L. et al. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front. Neural Circuits 8, 66 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Tanaka, Y. et al. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos. Chemosphere 193, 1207–1215 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Rungta, R. L. et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 161, 610–621 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Cesetti, T., Ciccolini, F. & Li, Y. GABA not only a neurotransmitter: osmotic regulation by GABA AR signaling. Front Cell Neurosci. 6, 3 (2012).

  • 68.

    Fernandes, E. C. A. et al. Potentiation of the human GABAA receptor as a novel mode of action of lower-chlorinated non-dioxin-like PCBs. Environ. Sci. Technol. 44, 2864–2869 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Magnusson, O., Mohringe, B., Thorell, G. & Lake-Bakaar, D. M. Effects of the dopamine D2 selective receptor antagonist remoxipride on dopamine turnover in the rat brain after acute and repeated administration. Pharmacol. Toxicol. 60, 368–373 (1987).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Seegal, R. F., Bush, B. & Shain, W. Lightly chlorinated ortho-substituted PCB congeners decrease dopamine in nonhuman primate brain and in tissue culture. Toxicol. Appl. Pharmacol. 106, 136–144 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Toro, C. et al. Dopamine modulates the activity of sensory hair cells. J. Neurosci. 35, 16494–16503 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Gafni, J., Wong, P. W. & Pessah, I. N. Non-coplanar 2,2’,3,5’,6-pentachlorobiphenyl (PCB 95) amplifies ionotropic glutamate receptor signaling in embryonic cerebellar granule neurons by a mechanism involving ryanodine receptors. Toxicol. Sci. 77, 72–82 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Ta, T. A., Feng, W., Molinski, T. F. & Pessah, I. N. Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors. Mol. Pharmacol. 69, 532–538 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Brunelli, L. et al. Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls. J. Proteomics. 75, 2417–2430 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958–969 (2018).

    Article 

    Google Scholar 

  • 76.

    Lai, Z. et al. Residual distribution and risk assessment of polychlorinated biphenyls in surface sediments of the Pearl River Delta, South China. Bull. Environ. Contam. Toxicol. 95, 37–44 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Gräns, J. et al. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor. Aquat. Toxicol. 159, 198–207 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Hudspeth, A. The cellular basis of hearing: the biophysics of hair cells. Science 230, 745–752 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Nakayama, H. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Pujol-Martí, J. & López-Schier, H. Developmental and architectural principles of the lateral-line neural map. Front. Neural Circuits 7, 47 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Panlilio, J. M., Jones, I. T., Salanga, M. C., Aluru, N. & Hahn, M. E. Developmental exposure to domoic acid disrupts startle response behavior and circuitry in zebrafish. Toxicol. Sci. 182, 310–326 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 82.

    Park, H.-C., Shin, J., Roberts, R. K. & Appel, B. An olig2 reporter gene marks oligodendrocyte precursors in the postembryonic spinal cord of zebrafish. Dev. Dyn. 236, 3402–3407 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Shin, J., Park, H.-C., Topczewska, J. M., Mawdsley, D. J. & Appel, B. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci. 25, 7–14 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Takada, N., Kucenas, S. & Appel, B. Sox10 is necessary for oligodendrocyte survival following axon wrapping. Glia 58, 996–1006 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Almeida, R. G., Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138, 4443–4450 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Kimmel, C. B. Patterning the brain of the zebrafish embryo. Annu. Rev. Neurosci. 16, 707–732 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Ranasinghe, P. et al. Embryonic exposure to 2,2′,3,5′,6-pentachlorobiphenyl (PCB-95) causes developmental malformations in zebrafish. Environ. Toxicol. Chem. 39, 162–170 (2019).

    Article 
    CAS 

    Google Scholar 

  • 88.

    Jönsson, M. E., Kubota, A., Timme-Laragy, A. R., Woodin, B. & Stegeman, J. J. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol. Appl. Pharmacol. 265, 166–174 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 89.

    Panlilio, J. M., Aluru, N. & Hahn, M. E. Developmental neurotoxicity of the harmful algal bloom toxin domoic acid: Cellular and molecular mechanisms underlying altered behavior in the zebrafish model. Environ. Health Perspect. 128, 117002 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Inoue, D. & Wittbrodt, J. One for all-a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 6, 1–7 (2011).

    Article 
    CAS 

    Google Scholar 

  • 91.

    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Edwards KA, Hoppa MB, Bosco G. The Photoconvertible Fluorescent Probe, CaMPARI, Labels Active Neurons in Freely-Moving Intact Adult Fruit Flies. Front Neural Circuits. 14, 22 https://doi.org/10.3389/fncir.2020.00022. (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Zhao, Y. et al. Rare earth elements lanthanum and praseodymium adversely affect neural and cardiovascular development in zebrafish (Danio rerio). Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c06632 (2020).

  • 94.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Collaborative management of the Grand Ethiopian Renaissance Dam increases economic benefits and resilience

    Dynamic carbon flux network of a diverse marine microbial community