in

Effects of ownership patterns on cross-boundary wildfires

  • 1.

    Stanfield, B. J., Bliss, J. C. & Spies, T. A. Land ownership and landscape structure: A spatial analysis of sixty-six Oregon (USA) Coast Range watersheds. Landsc. Ecol. 17, 685–697 (2002).

    Article 

    Google Scholar 

  • 2.

    Spies, T. et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol Soc 22, 25. https://doi.org/10.5751/ES-08841-220125 (2017).

    Article 

    Google Scholar 

  • 3.

    Zald, H. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 28, 1068–1080 (2018).

    Article 

    Google Scholar 

  • 4.

    Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS ONE 12, e0172867. https://doi.org/10.1371/journal.pone.0172867 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Abatzoglou, J. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Sheehan, T., Let, D. B. & Ferschweiler, K. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecol. Model. 317, 16–29 (2015).

    Article 

    Google Scholar 

  • 7.

    Spies, T. A. et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 19, 9. https://doi.org/10.5751/ES-06584-190309 (2014).

    Article 

    Google Scholar 

  • 8.

    Watkins, T. H. Untrammeled by man: The making of the Wilderness Act of 1964. Audubon 91, 74–90 (1989).

    Google Scholar 

  • 9.

    Huffman, D. W., Roccaforte, J. P., Springer, J. D. & Crouse, J. E. Restoration applications of resource objective wildfires in western US forests: A status of knowledge review. Fire Ecol. 16, 18. https://doi.org/10.1186/s42408-020-00077-x (2020).

    Article 

    Google Scholar 

  • 10.

    Charnley, S., Spies, T. A., Barros, A. M. G., White, E. M. & Olsen, K. A. Diversity in forest management to reduce wildfire losses: Implications for resilience. Ecol. Soc. 22, 1. https://doi.org/10.5751/ES-08753-220122 (2017).

    Article 

    Google Scholar 

  • 11.

    Lake, F. K. & Long, J. W. Fire and tribal cultural resources. Report No. PSW-GTR-274, (USDA USFS Pacific Southwest Research Station, Albany, CA, 2014).

  • 12.

    Binkley, C. S., Aronow, M. E., Washburn, C. L. & New, D. Global perspectives on intensively managed plantations: Implications for the Pacific Northwest. J. For. 103, 61–64 (2005).

    Google Scholar 

  • 13.

    Palaiologou, P. et al. Fine-scale assessment of cross-boundary wildfire events in the western United States. Nat. Hazards Earth Syst. Sci. 19, 1755–1777. https://doi.org/10.5194/nhess-19-1755-2019 (2019).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Ager, A. A., Palaiologou, P., Evers, C., Day, M. A. & Barros, A. M. Assessment of wildfire transmission from national forests to communities in the Western United States. 52 (USDA Forest Service, 2017).

  • 15.

    Steelman, T. U. S. wildfire governance as a social-ecological problem. Ecol. Soc. 21, 3. https://doi.org/10.5751/ES-08681-210403 (2016).

    Article 

    Google Scholar 

  • 16.

    Charnley, S., Kelly, E. C. & Fischer, A. P. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ. Res. Lett. 15, 025007 (2020).

    ADS 
    Article 

    Google Scholar 

  • 17.

    USDA Forest Service. Towards shared stewardship across landscapes: An outcome-based investment strategy. Report No. FS-118, (USDA Forest Service, Washington, DC, 2018).

  • 18.

    USDA Forest Service. National Cohesive Wildland Fire Management Strategy. http://www.forestsandrangelands.gov/strategy/index.shtml (2015).

  • 19.

    Marsik, M. et al. Regional-scale management maps for forested areas of the Southeastern United States and the US Pacific Northwest. Sci. Data 5, 1–13 (2018).

    Article 

    Google Scholar 

  • 20.

    Franklin, J. F. & Dyrness, C. T. in General Technical Report PNW-GTR-008 427 (U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, 1973).

  • 21.

    Simpson, M. Central Oregon Area Ecology and Forest Health Program (ed Pacific Northwest Region USDA Forest Service) (Bend, OR, 2013).

  • 22.

    MTBS. MTBS Data Access: Burned areas boundaries. https://www.mtbs.gov/index.php/direct-download. (2020).

  • 23.

    Picotte, J. J. et al. Changes to the monitoring trends in burn severity program mapping production procedures and data products. Fire Ecol. 16, 1–13 (2020).

    Article 

    Google Scholar 

  • 24.

    Meddens, A. J. H., Kolden, C. A., Lutz, J. A., Abatzoglou, J. & Hudak, A. T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 9, e02029 (2018).

    Article 

    Google Scholar 

  • 25.

    USGS. (USGS Gap Analysis Program (GAP), 2016).

  • 26.

    Gaines, L., Hemstrom, M., Kagan, J. & Salwasser, J. Integrated landscape assessment project final report. 62 (The Institute for Natural Resources, Oregon State University, Corvallis, Or, 2013).

  • 27.

    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    Article 

    Google Scholar 

  • 28.

    Manly, B., McDonald, L. & Thomas, D. Resource Selection by Animals (Chapman & Hall, 1993).

    Book 

    Google Scholar 

  • 29.

    Bajocco, S., Pezzatti, G. B., Mazzoleni, S. & Ricotta, C. Wildfire seasonality and land use: When do wildfires prefer to burn?. Envrion. Monit. Assess. 164, 445–452 (2010).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Bajocco, S. & Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land cover classes do wildfires prefer?. Landsc. Ecol. 23, 241–248 (2008).

    Article 

    Google Scholar 

  • 31.

    Barros, A. M. G. & Pereira, J. M. C. Wildfire selectivity for land cover type: Does size matter?. PLoS ONE 9, e84760 (2014).

    ADS 
    Article 

    Google Scholar 

  • 32.

    R Package ‘phuassess’ (2016).

  • 33.

    Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package “phuassess” for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).

    Article 

    Google Scholar 

  • 34.

    Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. A permutation-based combination of sign tests for assessing habitat selection. Environ. Ecol. Stat. 21, 161–187 (2013).

    MathSciNet 
    Article 

    Google Scholar 

  • 35.

    R: A Language and Environment for Statistical Computing v.3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 36.

    ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).

  • 37.

    MATLAB Release 2019a v. 2019a (The Mathworks, Inc., 2019).

  • 38.

    Collins, B. & Stephens, S. Fire scarring patterns in Sierra Nevada wilderness areas burned by multiple wildland fire use fires. Fire Ecol. 3, 53–67 (2007).

    Article 

    Google Scholar 

  • 39.

    Reilly, M. J. et al. Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains USA. Ecol. Appl. 28, 291–308 (2018).

    Article 

    Google Scholar 

  • 40.

    Johnston, J. D., Kilbride, J. B., Meigs, G. W., Dunn, C. J. & Kennedy, R. E. Does conserving roadless wildland increase wildfire activity in western US national forests?. Environ. Res. Lett. 16, 084040 (2021).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Schultz, C. A., Thompson, M. P. & McCaffrey, S. M. Forest service fire management and the elusiveness of change. Fire Ecol. 15, 1–15 (2019).

    Article 

    Google Scholar 

  • 42.

    Ager, A. A., Houtman, R., Day, M. A., Ringo, C. & Palaiologou, P. Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the wildland urban interface. For. Ecol. Manag. 434, 99–109 (2019).

    Article 

    Google Scholar 

  • 43.

    NWCG. Guidance for Implementation of Federal Wildland Fire Management Policy (2009).

  • 44.

    Franklin, J. F. et al. Extent and Distribution of Old Forest Conditions on Washington Department of Natural Resources-Managed Forest Lands in Eastern Washington (Washington Department of Natural Resources, 2007).

  • 45.

    Stephens, S. L. et al. Fire and climate change: Conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).

    Article 

    Google Scholar 

  • 46.

    Long, J., Lake, F. K., Lynn, K. & Viles, C. Tribal ecocultural resources and engagement. Report No. General Technical Report PNW-GTR-966, 851-917 (USDA – USFS, 2018).

  • 47.

    Scott, J. H. & Burgan, R. E. Standard fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. Report No. RMRS-GTR-153, 72 (USDA Forest Service, Rocky Mountain Research Station, 2005).

  • 48.

    Fernandes, P. M., Pacheco, A. P., Almeida, R. & Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 135, 253–262 (2016).

    Article 

    Google Scholar 

  • 49.

    WADNR, W. D. o. N. R. Forest Health Assessment and Treatment Framework (RCW 76.06.200) (Washington State Department of Natural Resources, 2020).

  • 50.

    Collins, B. M. & Stephens, S. L. Managing natural wildfires in Sierra Nevada wilderness areas. Front. Ecol. Environ. 5, 523–527 (2007).

    Article 

    Google Scholar 

  • 51.

    Holden, Z. A., Morgan, P., Rollins, M. G. & Kavanagh, K. Effects of multiple wildland fires on ponderosa pine stand structure in two southwestern wilderness areas, USA. Fire Ecol. 3, 18–33 (2007).

    Article 

    Google Scholar 

  • 52.

    Hunter, M. E., Iniguez, J. M. & Farris, C. A. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2014).


  • Source: Ecology - nature.com

    Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

    The language of change