in

Living in mixed species groups promotes predator learning in degraded habitats

  • 1.

    Turner, W. R. et al. Global conservation of biodiversity and ecosystem services. Bioscience 57, 868–873. https://doi.org/10.1641/B571009 (2007).

    Article 

    Google Scholar 

  • 2.

    O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. https://doi.org/10.1016/j.ecoinf.2019.101033 (2020).

    Article 

    Google Scholar 

  • 3.

    Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evolut. 2, 775–781. https://doi.org/10.1038/s41559-018-0504-8 (2018).

    Article 

    Google Scholar 

  • 4.

    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS. Biol. 11, 11. https://doi.org/10.1371/journal.pbio.1001569 (2013).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642. https://doi.org/10.1016/j.tree.2010.07.011 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Article 

    Google Scholar 

  • 9.

    Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Chivers, D. P., McCormick, M. I., Allan, B. J. & Ferrari, M. C. O. Risk assessment and predator learning in a changing world: Understanding the impacts of coral reef degradation. Sci. Rep. 6, 32542 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Downie, A. T. et al. Exposure to degraded coral habitat depresses oxygen uptake rate during exercise of a juvenile reef fish. Coral Reefs https://doi.org/10.1007/s00338-021-02113-x (2021).

    Article 

    Google Scholar 

  • 12.

    Ferrari, M. C. O., McCormick, M. I., Allan, B. J. & Chivers, D. P. Not equal in the face of habitat change: Closely related fishes differ in their ability to use predation-related information in degraded coral. Proc. R. Soc. B 284, 20162758 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    McCormick, M. I., Barry, R. P. & Allan, B. J. M. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 12. https://doi.org/10.1038/s41598-017-17197-1 (2017).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Brown, G. E. & Chivers, D. P. in Fish cognition and behaviour (eds C. Brown, K. Laland, & J. Krause) 49–69 (Blackwell Scientific Publisher, 2006).

  • 15.

    Meuthen, D., Baldauf, S. A., Bakker, T. C. M. & Thunken, T. Neglected patterns of variation in phenotypic plasticity: Age- and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490. https://doi.org/10.1086/696264 (2018).

    Article 

    Google Scholar 

  • 16.

    Lonnstedt, O. M., McCormick, M. I., Meekan, M. G., Ferrari, M. C. O. & Chivers, D. P. Learn and live: Predator experience and feeding history determines prey behaviour and survival. Proc. R. Soc. B-Biol. Sci. 279, 2091–2098. https://doi.org/10.1098/rspb.2011.2516 (2012).

    Article 

    Google Scholar 

  • 17.

    Ferrari, M. C. O. et al. School is out on noisy reefs: The effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proc. R. Soc. B-Biol. Sci. 285, 8. https://doi.org/10.1098/rspb.2018.0033 (2018).

    Article 

    Google Scholar 

  • 18.

    Chivers, D. P., McCormick, M. I., Mitchell, M. D., Ramasamy, R. A. & Ferrari, M. C. O. Background level of risk determines how prey categorize predators and non-predators. Proc. R. Soc. B 281, 20140355 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Crane, A. L. & Ferrari, M. C. O. in Social learning theory: Phylogenetic considerations across animal, plant, and microbial taxa (ed K. B. Clark) 53–82 (Nova Science Publishers, 2013).

  • 20.

    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).

    Article 

    Google Scholar 

  • 21.

    Mirza, R. S. & Chivers, D. P. Are chemical alarm cues conserved within salmonid fishes?. J. Chem. Ecol. 27, 1641–1655 (2001).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Brown, G. E., Adrian, J. C., Naderi, N. T., Harvey, M. C. & Kelly, J. M. Nitrogen oxides elicit antipredator responses in juvenile channel catfish, but not in convict cichlids or rainbow trout: Conservation of the ostariophysan alarm pheromone. J. Chem. Ecol. 29, 1781–1796 (2003).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Pollock, M. S., Chivers, D. P., Mirza, R. S. & Wisenden, B. D. Fathead minnows, Pimephales promelas, learn to recognize chemical alarm cues of introduced brook stickleback, Culaea inconstans. Environ. Biol. Fishes 66, 313–319 (2003).

    Article 

    Google Scholar 

  • 24.

    Chivers, D. P., Brown, G. E. & Smith, R. J. F. Acquired recognition of chemical stimuli from pike, Esox lucius, by brook sticklebacks, Culaea inconstans (Osteichthyes, Gasterosteidae). Ethology 99, 234–242 (1995).

    Article 

    Google Scholar 

  • 25.

    Mitchell, M. D., Cowman, P. F. & McCormick, M. I. Chemical alarm cues are conserved within the coral reef fish family Pomacentridae. Plos One 7, e47428 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Chivers, D. et al. Coral degradation alters predator odour signatures and influences prey learning and survival. Proc. R. Soc. B 286, 20190562 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Ferrari, M. C. O., McCormick, M. I., Meekan, M. G. & Chivers, D. P. Background level of risk and the survival of predator-naive prey: Can neophobia compensate for predator naivety in juvenile coral reef fishes?. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142197 (2015).

    Google Scholar 

  • 29.

    Stewart, B. D. & Beukers, J. S. Baited technique improves censuses of cryptic fish in complex habitats. Mar. Ecol. Prog. Ser. 197, 259–272 (2000).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Hoey, A. S. & McCormick, M. I. in Proceedings of the 10th international coral reef symposium Vol. 1. 420–424 (2006).

  • 31.

    McCormick, M. I., Chivers, D. P., Allan, B. J. & Ferrari, M. C. O. Habitat degradation disrupts neophobia in juvenile coral reef fish. Glob. Change Biol. 23, 719–727 (2017).

    ADS 
    Article 

    Google Scholar 

  • 32.

    McCormick, M. I., Moore, J. A. Y. & Munday, P. L. Influence of habitat degradation on fish replenishment. Coral Reefs 29, 537–546. https://doi.org/10.1007/s00338-010-0620-7 (2010).

    ADS 
    Article 

    Google Scholar 

  • 33.

    McCormick, M. I. Behaviourally mediated phenotypic selection in a disturbed coral reef environment. Plos One https://doi.org/10.1371/journal.pone.0007096 (2009).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 34.

    White, J. R., Meekan, M. G. & McCormick, M. I. Individual consistency in the behaviors of newly-settled reef fish. PeerJ 3, e961 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    McCormick, M. I. & Weaver, C. J. It pays to be pushy: Intracohort interference competition between two reef fishes. Plos One 7, e42590 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Wolf, N. G. Odd fish abandon mixed-species groups when threatened. Behav. Ecol. Sociobiol. 17, 47–52 (1985).

    Article 

    Google Scholar 

  • 37.

    Usio, N., Konishi, M. & Nakano, S. Species displacement between an introduced and a ‘vulnerable’ crayfish: The role of aggressive interactions and shelter competition. Biol. Invasions 3, 179–185 (2001).

    Article 

    Google Scholar 

  • 38.

    Dargent, F., Torres-Dowdall, J., Scott, M. E., Ramnarine, I. & Fussmann, G. F. Can mixed-species groups reduce individual parasite load? A field test with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta). PloS One 8, e56789 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Uetz, G. W. & Hieber, C. S. Group size and predation risk in colonial web-building spiders: Analysis of attack abatement mechanisms. Behav. Ecol. 5, 326–333 (1994).

    Article 

    Google Scholar 

  • 40.

    McCormick, M. I., Barry, R. P. & Allan, B. J. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 16937 (2017).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Lecchini, D., Planes, S. & Galzin, R. Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. Behav. Ecol. Sociobiol. 58, 18–26. https://doi.org/10.1007/s00265-004-0905-3 (2005).

    Article 

    Google Scholar 

  • 42.

    Lecchini, D., Planes, S. & Galzin, R. The influence of habitat characteristics and conspecifics on attraction and survival of coral reef fish juveniles. J. Exp. Mar. Biol. Ecol. 341, 85–90. https://doi.org/10.1016/j.jembe.2006.10.006 (2007).

    Article 

    Google Scholar 

  • 43.

    Lecchini, D., Waqalevu, V. P., Parmentier, E., Radford, C. A. & Banaigs, B. Fish larvae prefer coral over algal water cues: Implications of coral reef degradation. Mar. Ecol. Prog. Ser. 475, 303–307. https://doi.org/10.3354/meps10094 (2013).

    ADS 
    Article 

    Google Scholar 

  • 44.

    O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator–prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).

    Article 

    Google Scholar 

  • 46.

    Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 1205–1208 (2000).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Brown, G. E., Adrian, J. C., Smyth, E., Leet, H. & Brennan, S. Ostariophysan alarm pheromones: Laboratory and field tests of the functional significance of nitrogen oxides. J. Chem. Ecol. 26, 139–154 (2000).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Bertucci, F. et al. Decreased retention of olfactory predator recognition in juvenile surgeon fish exposed to pesticide. Chemosphere 208, 469–475 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Mitchell, M. D., McCormick, M. I., Ferrari, M. C. O. & Chivers, D. P. Coral reef fishes rapidly learn to identify multiple unknown predators upon recruitment to the reefs. Plos One 6, e15764 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Palacios, M., Malerba, M. & McCormick, M. Multiple predator effects on juvenile prey survival. Oecologia 188, 417–427 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    Auster, P. J., Cortés, J., Alvarado, J. J. & Beita-Jiménez, A. Coordinated hunting behaviors of mixed-species groups of piscivores and associated species at Isla del Coco National Park (Eastern Tropical Pacific). Neotrop. Ichthyol. 17, e180165 (2019).

    Article 

    Google Scholar 

  • 52.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Cheng, L. et al. 2018 Continues record global ocean warming. Adv. Atmos. Sci. 36, 249–252. https://doi.org/10.1007/s00376-019-8276-x (2019).

    Article 

    Google Scholar 

  • 54.

    Lawton, J. H. & Brown, V. K. Redundancy in ecosystems Vol. 99 (Springer, 1993).

    Google Scholar 


  • Source: Ecology - nature.com

    Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

    The language of change