in

Exacerbated drought impacts on global ecosystems due to structural overshoot

  • 1.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Google Scholar 

  • 2.

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    CAS 

    Google Scholar 

  • 3.

    Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    CAS 

    Google Scholar 

  • 4.

    Orth, R. & Destouni, G. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat. Commun. 9, 3602 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    CAS 

    Google Scholar 

  • 6.

    Schwalm, C. R. et al. Reduction in carbon uptake during turn of the century drought in western North America. Nat. Geosci. 5, 551–556 (2012).

    CAS 

    Google Scholar 

  • 7.

    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).

    Google Scholar 

  • 10.

    Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    CAS 

    Google Scholar 

  • 11.

    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

    CAS 

    Google Scholar 

  • 12.

    West, M. & Harrison, J. Bayesian Forecasting and Dynamic Models (Springer, 1997).

  • 13.

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Google Scholar 

  • 14.

    Nemani, R. R. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Zhang, X., Friedl, M. A., Schaaf, C. B. & Strahler, A. H. Climate controls on vegetation phenological patterns in northern mid and high latitudes inferred from MODIS data. Glob. Change Biol. 10, 1133–1145 (2004).

    Google Scholar 

  • 16.

    Zeng, Z. et al. Impact of earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).

    Google Scholar 

  • 17.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).

    CAS 

    Google Scholar 

  • 19.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Google Scholar 

  • 21.

    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Google Scholar 

  • 22.

    Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Google Scholar 

  • 23.

    Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  • 25.

    Sungmin, O. & Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 8, 170 (2021).

    Google Scholar 

  • 26.

    Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).

    Google Scholar 

  • 27.

    Otkin, J. A. et al. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 99, 911–919 (2018).

    Google Scholar 

  • 28.

    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    CAS 

    Google Scholar 

  • 30.

    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).

    Google Scholar 

  • 31.

    Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Google Scholar 

  • 33.

    Douville, H., Ribes, A., Decharme, B., Alkama, R. & Sheffield, J. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat. Clim. Change 3, 59–62 (2013).

    Google Scholar 

  • 34.

    Asrar, G., Fuchs, M., Kanemasu, E. T. & Hatfield, J. L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J. 76, 300–306 (1984).

    Google Scholar 

  • 35.

    Chen, J. M. & Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 55, 153–162 (1996).

    Google Scholar 

  • 36.

    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Google Scholar 

  • 37.

    Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).

    Google Scholar 

  • 38.

    Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    Google Scholar 

  • 39.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Google Scholar 

  • 41.

    Harrison, P. J. & Stevens, C. F. Bayesian forecasting. J. R. Stat. Soc. B 38, 205–247 (1976).

    Google Scholar 

  • 42.

    Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).

    Google Scholar 

  • 43.

    Humphrey, V., Gudmundsson, L. & Seneviratne, S. I. Assessing global water storage variability from grace: trends, seasonal cycle, subseasonal anomalies and extremes. Surv. Geophys. 37, 357–395 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    The language of change

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya