Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern resident killer whales (Orcinus orca). PLoS ONE 12, e0179824. https://doi.org/10.1371/journal.pone.0179824 (2017).
Google Scholar
Hoare, J. et al. Conservation implications of a long-term decline in body condition of the Brothers Island tuatara (Sphenodon guntheri). Anim. Conserv. 9, 456–462 (2006).
Google Scholar
Castrillon, J. & Bengtson Nash, S. Evaluating cetacean body condition; a review of traditional approaches and new developments. Ecol. Evol. (2020).
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
Google Scholar
Labrada-Martagón, V., Méndez-Rodríguez, L. C., Gardner, S. C., Cruz-Escalona, V. H. & Zenteno-Savín, T. Health indices of the green turtle (Chelonia mydas) along the Pacific coast of Baja California Sur, Mexico. II. Body condition index. Chelonian Conserv. Biol. 9, 173–183 (2010).
Weber, L., Higgins, P., Carlson, R. & Janz, D. Development and validation of methods for measuring multiple biochemical indices of condition in juvenile fishes. J. Fish Biol. 63, 637–658 (2003).
Google Scholar
Fokidis, H. B., Hurley, L., Rogowski, C., Sweazea, K. & Deviche, P. Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers. Physiol. Biochem. Zool. 84, 595–606 (2011).
Google Scholar
Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22. https://doi.org/10.1007/s10336-011-0706-1 (2012).
Google Scholar
Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119. https://doi.org/10.1111/j.1600-0706.2013.00755.x (2014).
Google Scholar
Bonnet, X. & Naulleau, G. Estimation of body reserves in living snakes using a Body Condition Index (BCI). Scientia Herpetologica 3, 237 (1995).
Lubbe, A., Underhill, L., Waller, L. & Veen, J. A condition index for African penguin Spheniscus demersus chicks. Afr. J. Mar. Sci. 36, 143–154 (2014).
Google Scholar
Santoro, M. et al. Parasitic infection by larval helminths in Antarctic fishes: pathological changes and impact on the host body condition index. Dis. Aquat. Org. 105, 139–148 (2013).
Google Scholar
Rossi, S. et al. Monitoring green sea turtles in Brazilian feeding areas: relating body condition index to fibropapillomatosis prevalence. J. Mar. Biol. Assoc. U.K. 99, 1879–1887 (2019).
Mubiana, V. K., Vercauteren, K. & Blust, R. The influence of body size, condition index and tidal exposure on the variability in metal bioaccumulation in Mytilus edulis. Environ. Pollut. 144, 272–279 (2006).
Google Scholar
Lippold, A. et al. Temporal trends of persistent organic pollutants in Barents Sea Polar bears (Ursus maritimus) in relation to changes in feeding habits and body condition. Environ. Sci. Technol. 53, 984–995 (2018).
Google Scholar
Delciellos, A. C. et al. Habitat fragmentation affects individual condition: evidence from small mammals of the Brazilian Atlantic Forest. J. Mammal. 99, 936–945 (2018).
Google Scholar
Burgess, E. A., Brown, J. L. & Lanyon, J. M. Sex, scarring, and stress: understanding seasonal costs in a cryptic marine mammal. Conserv. Physiol. 1, https://doi.org/10.1093/conphys/cot014 (2013).
McKinney, M. A. et al. Validation of adipose lipid content as a body condition index for polar bears. Ecol. Evol. 4, 516–527 (2014).
Google Scholar
Noren, S. R. et al. Identifying a reliable blubber measurement site to assess body condition in a marine mammal with topographically variable blubber, the Pacific walrus. Mar. Mamm. Sci. 31, 658–676 (2015).
Google Scholar
Arnould, J. P. Indices of body condition and body composition in female Antarctic fur seals (Arctocephalus gazella). Mar. Mamm. Sci. 11, 301–313 (1995).
Google Scholar
Pitcher, K., Calkins, D. & Pendleton, G. Steller sea lion body condition indices. Mar. Mamm. Sci. 16, 427–436 (2000).
Google Scholar
Harshaw, L. T., Larkin, I. V., Bonde, R. K., Deutsch, C. J. & Hill, R. C. Morphometric body condition indices of wild Florida manatees (Trichechus manatus latirostris). Aquat. Mamm. 42, 428 (2016).
Google Scholar
Castelblanco-Martínez, D. N., Nourisson, C., Quintana-Rizzo, E., Padilla-Saldivar, J. A. & Schmitter-Soto, J. J. Potential effects of human pressure and habitat fragmentation on population viability of the Antillean manatee Trichechus manatus manatus: a predictive model. Endanger. Spec. Res. 18, 129–145. https://doi.org/10.3354/esr00439 (2012).
Google Scholar
IUCN. The IUCN Red List of Threatened Species. Version 2020–2. https://www.iucnredlist.org. Downloaded on 09 Dec 2020. (2020).
Quintana-Rizzo, E. & Reynolds III, J. E. Regional management plan for the West Indian manatee. 178 (United Nations Environment Programme. United Nations Environment Programme. CEP Technical Report, Kingston, Jamaica, 2008).
Morrison, M. L. The habitat sampling and analysis paradigm has limited value in animal conservation: a prequel. J. Wildl. Manag. 76, 438–450 (2012).
Google Scholar
Wong, A. W. et al. Monitoring oral temperature, heart rate, and respiration rate of West Indian manatees (Trichechus manatus) during capture and handling in the field. Aquat. Mamm. 38, 1–16. https://doi.org/10.1578/AM.38.1.2012.1 (2012).
Google Scholar
Castelblanco-Martínez, D. N., Morales-Vela, B. & Padilla-Saldívar, J. A. Using craniometrical predictors to infer body size of Antillean manatees. Mammalia 78, 109–115 (2014).
Google Scholar
QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org. (2021).
Bonde, R. K. et al. Biomedical health assessments of the Florida manatee in Crystal River – providing opportunities for training during the capture, handling, and processing of this endangered aquatic mammal. J. Mar. Anim. Ecol. 5 (2012).
Mignucci-Giannoni, A. A. et al. Manatee mortality in Puerto Rico. Environ. Manage. 25, 189–198 (2000).
Google Scholar
Susanti, Y., Pratiwi, H., Sulistijowati H., S., & Liana, T. M estimation, S estimation, and MM estimation in robust regression. Int. J. Pure Appl. Math. 91, 349–360 (2014).
R Core Team. R: A language and environment for statistical computing: version 3.6.0. URL: https://www.R-project.org (2019).
Maechler, M. et al. robustbase: Basic robust statistics. R package version 0.4–3, http://CRAN.R-project.org/package=robustbase (2021).
Koller, M. & Stahel, W. A. Nonsingular subsampling for regression S estimators with categorical predictors. Comput. Stat. 32, 631–646 (2017).
Google Scholar
Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer International Publishing. Cham, 2016).
Google Scholar
Converse, L. J., Fernandes, P. J., Macwilliams, P. S. & Bossart, G. D. Hematology, serum chemistry, and morphometric reference values for Antillean Manatees (Trichechus manatus manatus). J. Zoo Wildl. Med. 25, 423–431 (1994).
O’Shea, T. J. & Reep, R. L. Encephalization quotients and life-history traits in the Sirenia. J. Mammal. 71, 534–543 (1990).
Google Scholar
Chirachevin, P. The relationship between cold stress syndrome mortality and body shape in Florida manatees. Undergraduate thesis, Andrews University (2017).
Johnson, J. Is natural selection shaping Florida manatees? An investigation into the body shapes between the subspecies of the West Indian manatee. Undergraduate thesis, Andrews University, (2019).
Torres-Romero, E. J., Morales-Castilla, I. & Olalla-Tárraga, M. Á. Bergmann’s rule in the oceans? Temperature strongly correlates with global interspecific patterns of body size in marine mammals. Global Ecol. Biogeogr. 25, 1206–1215 (2016).
Google Scholar
Alvarez-Alemán, A., Beck, C. A. & Powell, J. A. First report of a Florida manatee (Trichechus manatus latirostris) in Cuba. Aquat. Mamm. 36, 148–153. https://doi.org/10.1578/AM.36.2.2010.148 (2010).
Google Scholar
Alvarez-Alemán, A., Austin, J. D., Jacoby, C. A. & Frazer, T. K. Cuban connection: regional role for Florida’s manatees. Front. Mar. Sci. 5, 294 (2018).
Google Scholar
Rood, K., Teague, A., Barton, S., Alvarez-Alemán, A. & Hieb, E. First documentation of return movement from Cuba to the continental United States by a Florida manatee. Sirenews 71, 24–25 (2020).
Konishi, K. Characteristics of blubber distribution and body condition indicators for Antarctic minke whales (Balaenoptera bonaerensis). Mamm. Study 31, 15–22 (2006).
Google Scholar
Viblanc, V. A. et al. Body girth as an alternative to body mass for establishing condition indexes in field studies: a validation in the king penguin. Physiol. Biochem. Zool. 85, 533–542 (2012).
Google Scholar
Ramos, E. A., Landeo-Yauri, S., Castelblanco-Martinez, N., Quade, A. & Rieucau, G. Drone-based photogrammetry assessments of body size and body condition of Antillean manatees. Mamm. Biol. (In prep. ).
Lanyon, J. M., Sneath, H. L., Long, T. & Bonde, R. K. Physiological response of wild dugongs (Dugong dugon) to out-of-water sampling for health assessment. Aquat. Mamm. 36, 46–58 (2010).
Google Scholar
Baker, J., Meade, A., Pagel, M. & Venditti, C. Adaptive evolution toward larger size in mammals. Proc. Natl. Acad. Sci. 112, 5093–5098 (2015).
Google Scholar
Noren, S. R. & Williams, T. M. Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 126, 181–191, https://doi.org/10.1016/S1095-6433(00)00182-3 (2000).
Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl. Acad. Sci. 104, 17707–17712 (2007).
Google Scholar
Cassini, M. H. A mixed model of the evolution of polygyny and sexual size dimorphism in mammals. Mammal Rev. 50, 112–120 (2020).
Google Scholar
Fokidis, H. B., Risch, T. S. & Glenn, T. C. Reproductive and resource benefits to large female body size in a mammal with female-biased sexual size dimorphism. Anim. Behav. 73, 479–488 (2007).
Google Scholar
Deutsch, C. J. et al. Seasonal movements, migratory behavior and site fidelity of West Indian manatees along the Atlantic Coast of the United States. Wildl. Monogr. 151, 1–77 (2003).
Flamm, R. O., Weigle, B. L., Wright, I. E., Ross, M. & Aglietti, S. Estimation of manatee (Trichechus manatus latirostris) places and movement corridors using telemetry data. Ecol. Appl. 15, 1415–1426 (2005).
Google Scholar
Puc-Carrasco, G., Morales-Vela, B., Olivera-Gomez, L. D. & González-Solís, D. First field-based estimate of Antillean manatee abundance in the San Pedro River system suggests large errors in current estimates for Mexico. Cienc. Mar. 43, 285–299 (2017).
Google Scholar
Puc-Carrasco, G., Olivera-Gómez, L. D., Arriaga-Hernández, S. & Jiménez-Domínguez, D. Relative abundance of Antillean manatees in the Pantanos de Centla Biosphere Reserve in the coastal plain of Tabasco Mexico. Cienc. Mar. 42, 261–270 (2016).
Google Scholar
Castelblanco-Martínez, D. N., Kendall, S., Orozco, D. L. & Arévalo-González, K. La conservación de los manatíes (Trichechus inunguis y Trichechus manatus) en áreas no protegidas de Colombia in Conservación de grandes vertebrados en áreas no protegidas de Colombia, (eds Payán, E. et al.) 81–98 (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2015).
Castelblanco-Martínez, D. N. et al. Movement patterns of Antillean manatees in Chetumal Bay (Mexico) and coastal Belize: A challenge for regional conservation. Mar. Mamm. Sci. 29, 166–182. https://doi.org/10.1111/j.1748-7692.2012.00602.x (2013).
Google Scholar
Corona-Figueroa, M. et al. Searching for manatees in the dark waters of a transboundary river between Mexico and Belize: a predictive distribution model. Aquat. Ecol., 1–16 (2020).
Alvarez-Alemán, A., Angulo-Valdés, J. A., Alfonso, E. G., Powell, J. A. & Taylor, C. R. Occurrence of the Endangered Antillean manatee Trichechus manatus manatus in a marine protected area, Isla de la Juventud, Cuba. Oryx 51, 324–331 (2017).
Google Scholar
Castelblanco-Martínez, D. N., dos Reis, V. & de Thoisy, B. How to detect an elusive aquatic mammal in complex environments? A study of the Endangered Antillean manatee Trichechus manatus manatus in French Guiana. Oryx 52, 382–392. https://doi.org/10.1017/S0030605316000922 (2017).
Google Scholar
Castelblanco-Martínez, D. N., Holguín, V. E. & Zapata, M. Conservación y manejo del manatí en la Ciénaga de Paredes (Santander). In Programa Nacional de manejo y conservación de manatíes en Colombia, (eds Caicedo, D. et al.) 105–113 (Ministerio de Ambiente, Vivienda y Desarrollo Territorial – Fundación Omacha, 2005).
Gonzalez-Socoloske, D. & Olivera-Gomez, L. Food choice by a free-ranging Antillean manatee (Trichechus manatus manatus) in Tabasco, Mexico. J. Mar. Anim. Ecol. 11, 19–32 (2019).
Jimenez-Dominguez & Olivera Gómez, L. D. Características del hábitat del manatí antillano (Trichechus manatus manatus) en sistemas fluvio-lagunares del sur del Golfo de México. Therya 5, 601–6014 (2014).
Best, R. C. Apparent dry-season fasting in Amazonian manatees (Mammalia, Sirenia). Biotropica 15, 61–64 (1983).
Google Scholar
Florant, G. L. & Healy, J. E. The regulation of food intake in mammalian hibernators: a review. J. Comp. Physiol., B 182, 451–467 (2012).
Tighe, R. L., Bonde, R. K. & Avery, J. P. Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris). Mamm. Biol. 81, 247–254. https://doi.org/10.1016/j.mambio.2016.02.006 (2016).
Google Scholar
Castelblanco-Martínez, D. N., Morales-Vela, B., Hernández-Arana, H. A. & Padilla-Saldívar, J. Diet of the manatees Trichechus manatus manatus in Chetumal Bay, Mexico. Latin Am. J. Aquat. Mammals 7, 39–46 (2009).
Allen, A. C., Beck, C. A., Bonde, R. K., Powell, J. A. & Gomez, N. A. Diet of the Antillean manatee (Trichechus manatus manatus) in Belize, Central America. J. Mar. Biol. Assoc. U.K., 1–10 (2017).
Garcés-Cuartas, N. Ecología trófica del manatí del Caribe: una herramienta de conservación para ecosistemas estratégicos en el Caribe mexicano Ph.D. thesis, Universidad de Quintana Roo, (2020).
Rodrigues, F. M. et al. Nutritional composition of food items consumed by Antillean manatees (Trichechus manatus manatus) along the coast of Paraíba Northeastern Brazil. Aquat. Bot. 168, 103324. https://doi.org/10.1016/j.aquabot.2020.103324 (2021).
Google Scholar
Navarro-Martínez, Z., Alvarez-Alemán, A. & Castelblanco-Martínez, D. N. Diet components in three manatees in Cuba. Rev. Invest. Mar. 34, 1–11 (2014).
Ponce-García, G., Olivera-Gómez, L. D. & Solano, E. Analysis of the plant composition of manatee (Trichechus manatus manatus) faeces in a lake in south-eastern Mexico. Aquat. Conserv.: Mar. Freshwat. Ecosyst. (2017).
Pablo-Rodríguez, N., Olivera-Gómez, L. D., Aurioles-Gamboa, D. & Vega-Cendejas, M. E. Seasonal differences in the feeding habits of the Antillean manatee population (Trichechus manatus manatus) in the fluvial-lagoon systems of Tabasco Mexico. Mar. Mamm. Sci. 32, 363–375 (2016).
Google Scholar
Siegal-Willott, J. L. et al. Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia). J. Zoo Wildl. Med. 41, 594–602, https://doi.org/10.1638/2009-0118.1 (2010).
Lomolino, M. V. & Ewel, K. C. Digestive efficiencies of the West Indian manatee (Trichechus manatus). Fla. Sci. 47, 176–179 (1984).
Larkin, I. L. V., Fowler, V. F. & Reep, R. L. Digesta passage rates in the Florida manatee Trichechus manatus latirostris. Zoo Biol. 26, 503–515 (2007).
Google Scholar
Reynolds, J. E. III. & Rommel, S. A. Structure and function of the gastrointestinal tract of the Florida manatee Trichechus manatus latirostris. Anat. Rec. 245, 539–558 (1996).
Google Scholar
Arévalo-González, K. Aspectos de la ecología y fisiología alimentaria del manatí antillano. M.Sc. thesis, Universidad Veracruzana (2020).
Harshaw, L. T., Larkin, I. V., Staples, C. R., Scott, K. C. & Hill, R. C. In vivo apparent digestibility of fiber in Florida manatees (Trichechus manatus latirostris) under human care. Aquat. Mamm. 45, 513–524 (2019).
Google Scholar
Alves-Stanley, C. D. & Worthy, G. A. J. Carbon and nitrogen stable isotope turnover rates and diet-tissue discrimination in Florida manatees (Trichechus manatus latirostris). J. Exp. Biol. 212, 2349–2355 (2009).
Google Scholar
Alves-Stanley, C. D., Worthy, G. A. J. & Bonde, R. K. Feeding preferences of the West Indian manatee in Florida, Belize, and Puerto Rico as indicated by stable isotope analysis. Mar. Ecol. Prog. Ser. 402, 255–267 (2010).
Google Scholar
West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).
Google Scholar
Stamper, M. A. & Bonde, R. Health assessment of captive and wild-caught West Indian manatees. In Sirenian conservation: Issues and strategies in developing countries, (eds Hines, E. et al.) (University Press of Florida, 2012).
Wilder, S. M., Raubenheimer, D. & Simpson, S. J. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct. Ecol. 30, 108–115 (2016).
Google Scholar
Santos, N. et al. Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores. Sci. Rep. 10, 15755. https://doi.org/10.1038/s41598-020-72761-6 (2020).
Google Scholar
Mumby, H. S. et al. Stress and body condition are associated with climate and demography in Asian elephants. Conserv. Physiol. 3, cov030 (2015).
Abujanra, F., Agostinho, A. & Hahn, N. Effects of the flood regime on the body condition of fish of different trophic guilds in the Upper Paraná River floodplain Brazil. Braz. J. Biol. 69, 459–468 (2009).
Google Scholar
Source: Ecology - nature.com