in

UAV reveals substantial but heterogeneous effects of herbivores on Arctic vegetation

  • 1.

    Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Schmitz, O. J. Herbivory from individuals to ecosystems. Annu. Rev. Ecol. Evol. Syst. 39, 133–152 (2008).

    Article 

    Google Scholar 

  • 5.

    Adler, P., Raff, D. & Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128, 465–479 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Weeber, J., Hempson, G. P. & February, E. C. Large herbivore conservation in a changing world: Surface water provision and adaptability allow wildebeest to persist after collapse of long-range movements. Glob. Change Biol. 26, 2841–2853 (2020).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Senft, R. L., Rittenhouse, L. R. & Woodmansee, R. G. Factors influencing patterns of cattle grazing behavior on shortgrass steepe. Rangel. Ecol. Manag. Range Manag. Arch. 38, 82–87 (1985).

    Google Scholar 

  • 9.

    McNaughton, S. J., Banyikwa, F. F. & McNaughton, M. M. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278, 1798–1800 (1997).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Olofsson, J., De Mazancourt, C. & Crawley, M. J. Spatial heterogeneity and plant species richness at different spatial scales under rabbit grazing. Oecologia 156, 825–834 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).

    Article 

    Google Scholar 

  • 13.

    Oksanen, T. et al. The impact of thermal seasonality on terrestrial endotherm food web dynamics: A revision of the Exploitation Ecosystem Hypothesis. Ecography 43, 1859–1877 (2020).

    Article 

    Google Scholar 

  • 14.

    Fine, P. V. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar 

  • 16.

    Oliver, T., Roy, D. B., Hill, J. K., Brereton, T. & Thomas, C. D. Heterogeneous landscapes promote population stability. Ecol. Lett. 13, 473–484 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Siewert, M. B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 15, 1663–1682 (2018).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Newton, E. J., Pond, B. A., Brown, G. S., Abraham, K. F. & Schaefer, J. A. Remote sensing reveals long-term effects of caribou on tundra vegetation. Polar Biol. 37, 715–725 (2014).

    Article 

    Google Scholar 

  • 21.

    Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Ehrich, D. et al. Documenting lemming population change in the Arctic: Can we detect trends?. Ambio https://doi.org/10.1007/s13280-019-01198-7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Olofsson, J., Tømmervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Hambäck, P. A., Schneider, M. & Oksanen, T. Winter herbivory by voles during a population peak: The relative importance of local factors and landscape pattern. J. Anim. Ecol. 67, 544–553 (1998).

    Article 

    Google Scholar 

  • 25.

    Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution: Ecosystem carbon in taiga and tundra. J. Geophys. Res. Biogeosciences 120, 1973–1994 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27(Part A), 4–12 (2014).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Siewert, M. B., Lantuit, H., Richter, A. & Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 35, e2020GB006659 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Koh, L. P. & Wich, S. A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5, 121–132 (2012).

    Article 

    Google Scholar 

  • 29.

    Assmann, J. J., Kerby, J. T., Cunliffe, A. M. & Myers-Smith, I. H. Vegetation monitoring using multispectral sensors—best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 7, 54–75 (2018).

    Article 

    Google Scholar 

  • 30.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).

    Article 

    Google Scholar 

  • 31.

    Barrio, I. C. et al. Herbivory network: An international, collaborative effort to study herbivory in Arctic and alpine ecosystems. Polar Sci. 10, 297–302 (2016).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Siewert, M. B., Hugelius, G., Heim, B. & Faucherre, S. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta. CATENA 147, 725–741 (2016).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Olofsson, J. et al. Long-term experiments reveal strong interactions between lemmings and plants in the fennoscandian highland tundra. Ecosystems 17, 606–615 (2014).

    Article 

    Google Scholar 

  • 34.

    Virtanen, R., Parviainen, J. & Henttonen, H. Winter grazing by the Norwegian lemming (Lemmus lemmus) at Kilpisjärvi (NW Finnish Lapland) during a moderate population peak. Ann. Zool. Fenn. 39, 335–341 (2002).

    Google Scholar 

  • 35.

    Johnson, D. R. et al. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: resampling of a 50 $mathplus$ year herbivore exclosure experiment near Barrow, Alaska. Environ. Res. Lett. 6, 045507 (2011).

    Article 

    Google Scholar 

  • 36.

    Petit Bon, M. et al. Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos 129, 1229–1242 (2020).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Virtanen, R., Henttonen, H. & Laine, K. Lemming grazing and structure of a snowbed plant community: A long-term experiment at Kilpisjärvi, Finnish Lapland. Oikos 79, 155–166 (1997).

    Article 

    Google Scholar 

  • 38.

    Domine, F. et al. Snow physical properties may be a significant determinant of lemming population dynamics in the high Arctic. Arct. Sci. 4, 813–826 (2018).

    Article 

    Google Scholar 

  • 39.

    Aunapuu, M. et al. Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis (EEH). Am. Nat. 171, 249–262 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Hoset, K. S., Kyrö, K., Oksanen, T., Oksanen, L. & Olofsson, J. Spatial variation in vegetation damage relative to primary productivity, small rodent abundance and predation. Ecography 37, 894–901 (2014).

    Article 

    Google Scholar 

  • 41.

    Hoset, K. S. et al. Changes in the spatial configuration and strength of trophic control across a productivity gradient during a massive rodent outbreak. Ecosystems 20, 1421–1435 (2017).

    Article 

    Google Scholar 

  • 42.

    Lindén, E., Gough, L. & Olofsson, J. Large and small herbivores have strong effects on tundra vegetation in Scandinavia and Alaska. Ecol. Evol. 11, 12141–12152 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a Modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).

    Article 

    Google Scholar 

  • 44.

    Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278 (2010).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Street, L. E., Shaver, G. R., Williams, M. & Van Wijk, M. T. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems?. J. Ecol. 95, 139–150 (2007).

    Article 

    Google Scholar 

  • 47.

    Morris, D. W., Dupuch, A. & Halliday, W. D. Climate-induced habitat selection predicts future evolutionary strategies of lemmings. Evol. Ecol. Res. 14, 689–705 (2012).

    Google Scholar 

  • 48.

    Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Cunliffe, A. M., Assmann, J. J., Daskalova, G., Kerby, J. T. & Myers-Smith, I. H. Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aba470 (2020).

    Article 

    Google Scholar 

  • 50.

    Myllymäki, A., Paasikallio, A., Pankakoski, E. & Kanervo, V. Removal experiments on small quadrats as a means of rapid assessment of the abundance of small mammals. Ann. Zool. Fenn. 8, 177–185 (1971).

    Google Scholar 

  • 51.

    Inglada, J. & Christophe, E. The Orfeo Toolbox remote sensing image processing software. In 2009 IEEE International Geoscience and Remote Sensing Symposium vol. 4 IV–733 (IEEE, 2009).

  • 52.

    Leutner, B., Horning, N., Schwalb-Willmann, J. & Hijmans, R. J. RStoolbox: Tools for remote sensing data analysis. R Package Version 026 7, 1991–2007 (2019).

    Google Scholar 

  • 53.

    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • 55.

    Hussain, M., Chen, D., Cheng, A., Wei, H. & Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 80, 91–106 (2013).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A. & Fisher, P. F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 160, 1–14 (2015).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. (2020).

  • 58.

    Pebesma, E. & Graeler, B. gstat: Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation. (2020).

  • 59.

    Fortin, M.-J. & Dale, M. R. T. Spatial Autocorrelation. In The SAGE Handbook of Spatial Analysis 88–103 (SAGE Publications, Ltd, 2009). https://doi.org/10.4135/9780857020130.n6.

  • 60.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • 61.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2020). http://qgis.osgeo.org. Accessed 12 Sept 2020


  • Source: Ecology - nature.com

    The language of change

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya