in

Degree of anisogamy is unrelated to the intensity of sexual selection

  • 1.

    Andersson, M. B. Sexual Selection (Princeton University Press, 1994).

    Book 

    Google Scholar 

  • 2.

    Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).

    Book 

    Google Scholar 

  • 3.

    Herridge, E. J., Murray, R. L., Gwynne, D. T. & Bussière, L. F. Mating and parental sex roles, diversity in. Encycl. Evol. Biol. 2, 453–458 (2016).

    Article 

    Google Scholar 

  • 4.

    Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21, 919–948 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Schärer, L., Rowe, L. & Arnqvist, G. Anisogamy, chance and the evolution of sex roles. Trends Ecol. Evol. 27, 260–264 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1–6 (2013).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Jennions, M. D. & Fromhage, L. Not all sex ratios are equal: The Fisher condition, parental care and sexual selection. Philos. Trans. R. Soc. B Biol. Sci 372, 20160312 (2017).

    Article 

    Google Scholar 

  • 8.

    Darwin, C. The Descent Man, and Selection in Relation to Sex. John Murray, vol. ah-king (1871).

  • 9.

    Ah-King, M. & Ahnesjö, I. The ‘sex role’ concept: An overview and evaluation. Evol. Biol. 40, 461–470 (2013).

    Article 

    Google Scholar 

  • 10.

    Pizzari, T. & Bonduriansky, R. Sexual behaviour: Conflict, cooperation and co-evolution. In Social Behaviour: Genes, Ecology and Evolution (eds Szekely, T. et al.) (Cambridge University Press, 2010).

    Google Scholar 

  • 11.

    Trumbo, S. T. Patterns of parental care in invertebrates. Evol. Parent. Care 12, 62–81 (2012).

    Google Scholar 

  • 12.

    Balshine, S. Patterns of parental care in vertebrates. In The Evolution of Parental Care (eds Royle, N. et al.) 62–81 (Oxford University Press, 2012).

    Chapter 

    Google Scholar 

  • 13.

    Székely, T., Remeš, V., Freckleton, R. P. & Liker, A. Why care? Inferring the evolution of complex social behaviour. J. Evol. Biol. 26, 1381–1391 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 15.

    Snyder, B. F. & Gowaty, P. A. A reappraisal of Bateman’s classic study of intrasexual selection. Evolution 61, 2457–2468 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Gowaty, P. A., Kim, Y.-K. & Anderson, W. W. No evidence of sexual selection in a repetition of Bateman’s classic study of Drosophila melanogaster. Proc. Natl. Acad. Sci. 109, 11740–11745 (2012).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 17.

    Wade, M. J. Don’t Throw Bateman Out with the Bathwater!. Integr. Comp. Biol. 45, 945–951 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Dewsbury, D. A. The Darwin–Bateman paradigm in historical context. Integr. Comp. Biol. 45, 831–837 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Lab. Press 6, a017509 (2014).

    Article 

    Google Scholar 

  • 20.

    Jones, A. G., Arguello, J. R. & Arnold, S. J. Validation of Bateman’s principles: A genetic study of sexual selection and mating patterns in the rough-skinned newt. Proc. R. Soc. B Biol. Sci. 269, 2533–2539 (2002).

    Article 

    Google Scholar 

  • 21.

    Collet, J. M., Dean, R. F., Worley, K., Richardson, D. S. & Pizzari, T. The measure and significance of Bateman’s principles. Proc. R. Soc. B Biol. Sci. 281, 20132973–20132973 (2014).

    Article 

    Google Scholar 

  • 22.

    Hoquet, T. Bateman (1948): Rise and fall of a paradigm?. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.12.008 (2019).

    Article 

    Google Scholar 

  • 23.

    Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal kingdom. Sci. Adv. 2, e1500983–e1500983 (2016).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 24.

    Tang-Martinez, Z. & Ryder, B. T. The problem with paradigms: Bateman’s worldview as a case study. Integr. Comp. Biol. 54, 821–830 (2005).

    Article 

    Google Scholar 

  • 25.

    Levitan, D. Does Bateman’s principle apply to broadcast-spawning organisms ? Egg traits Iifluence in situ fertilization rates among congeneric sea urchins. Evolution 52, 1043–1056 (1998).

    PubMed 

    Google Scholar 

  • 26.

    Drea, C. M. Bateman revisited: The reproductive tactics of female primates. Integr. Comp. Biol. 45, 915–923 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Kokko, H. Should advertising parental care be honest?. Proc. R. Soc. B Biol. Sci. 265, 1871–1878 (1998).

    Article 

    Google Scholar 

  • 28.

    Remeš, V. & Matysioková, B. More ornamented females produce higher-quality offspring in a socially monogamous bird: An experimental study in the great tit (Parus major). Front. Zool. 10, 1–10 (2013).

    Article 

    Google Scholar 

  • 29.

    Hanschen, E. R., Herron, M. D., Wiens, J. J., Nozaki, H. & Michod, R. E. Multicellularity drives the evolution of sexual traits. Am. Nat. 192, E93–E105 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Queller, D. C. Why do females care more than males?. Proc. R. Soc. B Biol. Sci. 264, 1555–1557 (1997).

    Article 
    ADS 

    Google Scholar 

  • 31.

    Alcock, J. Sexual selection and the mating behavior of solitary bees. in (eds. Brockmann, H. J. et al.) vol. 45 1–48 (Academic Press, 2013).

  • 32.

    Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy–isogamy continuum. Nature 441, 742–745 (2006).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 33.

    Kodric-Brown, A. & Brown, J. H. Anisogamy, sexual selection, and the evolution and maintenance of sex. Evol. Ecol. 1, 95–105 (1987).

    Article 

    Google Scholar 

  • 34.

    Schulte-Hostedde, A. I., Millar, J. S. & Gibbs, H. L. Sexual selection and mating patterns in a mammal with female-biased sexual size dimorphism. Behav. Ecol. 15, 351–356 (2004).

    Article 

    Google Scholar 

  • 35.

    Liker, A., Freckleton, R. P., Remeš, V. & Székely, T. Sex differences in parental care: Gametic investment, sexual selection, and social environment. Evolution 69, 2862–2875 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy-isogamy continuum. Nature 441, 742–745 (2006).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 37.

    Thomas, G. H. & Székely, T. Evolutionary pathways in shorebird breeding systems: Sexual conflict, parental care, and chick development. Evolution 59, 2222 (2006).

    Article 

    Google Scholar 

  • 38.

    Gonzalez-Voyer, A., Fitzpatrick, J. L. & Kolm, N. Sexual selection determines parental care patterns in cichlid fishes. Evolution 62, 2015–2026 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Garamszegi, L. Z. & Møller, A. P. Untested assumptions about within-species sample size and missing data in interspecific studies. Behav. Ecol. Sociobiol. 66, 1363–1373 (2012).

    Article 

    Google Scholar 

  • 40.

    Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).

    Article 

    Google Scholar 

  • 41.

    Nakagawa, S. & Freckleton, R. P. Missing inaction: The dangers of ignoring missing data. Trends Ecol. Evol. 23, 592–596 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Wiens, J. J. & Morrill, M. C. Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Syst. Biol. 60, 719–731 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Apakupakul, K. & Rubenstein, D. R. Bateman’s principle is reversed in a cooperatively breeding bird. Biol. Lett. 11, 20150034 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).

    Article 

    Google Scholar 

  • 45.

    Lajeunesse, M. Recovering missing data or partial data from studies: A survey of conversions and imputation for meta-analysis. Handb. Meta-Anal. Ecol. Evol. 195–206 (2013).

  • 46.

    Smith, R. J. Statistics of sexual size dimorphism. J. Hum. Evol. 36, 423–458 (1999).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Dunn, P. O., Whittingham, L. A. & Pitcher, T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–175 (2001).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 48.

    Pérez-Barbería, F. J., Gordon, I. J. & Pagel, M. The origins of sexual dimorphism in body size in ungulates. Evolution 56, 1276–1285 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Weckerly, F. W. Sexual-size dimorphism: Influence of mass and mating systems in the most dimorphic mammals. J. Mammal. 79, 33–52 (1998).

    Article 

    Google Scholar 

  • 50.

    Székely, T., Reynolds, J. D. & Figuerola, J. Sexual size dimorphism in shorebirds, gulls, and alcids: The influence of sexual and natural selection. Evolution 54, 1404–1413 (2000).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).

    Book 

    Google Scholar 

  • 52.

    Janicke, T. & Fromonteil, S. Sexual Selection and Sexual Size Dimorphism in Animals. (2021) https://doi.org/10.1101/2021.05.10.443408.

  • 53.

    De Lisle, S. P. Understanding the evolution of ecological sex differences: Integrating character displacement and the Darwin–Bateman paradigm. Evol. Lett. 3, 434–447 (2019).

    Article 

    Google Scholar 

  • 54.

    Harvey, P. H. & Clutton-Brock, T. H. Life history variation in primates. Evolution 39, 559–581 (1985).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 56.

    Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).

    Article 

    Google Scholar 

  • 57.

    Pagel, M. Inferring evolutionary processes from molecular phylogenies. Zool. Scr. 98, 313–333 (1997).

    Google Scholar 

  • 58.

    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 59.

    Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).

    Article 

    Google Scholar 

  • 60.

    Orme, D. The caper package: Comparative analysis of phylogenetics and evolution in R. R Package Version 05(2), 1–36 (2013).

    Google Scholar 

  • 61.

    Penone, C. et al. Imputation of missing data in life-history trait datasets: Which approach performs the best?. Methods Ecol. Evol. 5, 1–10 (2014).

    Article 

    Google Scholar 

  • 62.

    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: Fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).

    Article 

    Google Scholar 

  • 63.

    Goolsby, A. E. W., Bruggeman, J., Ane, C. & Goolsby, M. E. W. Package ‘ Rphylopars ’. (2016).

  • 64.

    Parker, G. A. Sexual selection and sexual conflict. In Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) (Academic Press, 1979).

    Google Scholar 

  • 65.

    Trivers, R. L. Social Evolution (Benjamin-Cummings Pub Co, 1985).

    Google Scholar 

  • 66.

    AlRashidi, M., Kosztolányi, A., Shobrak, M., Küpper, C. & Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 82, 235–243 (2011).

    Article 

    Google Scholar 

  • 67.

    Gwynne, D. T. & Simmons, L. W. Experimental reversal of courtship roles in an insect. Nature 346, 172–174 (1990).

    Article 
    ADS 

    Google Scholar 

  • 68.

    Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).

    Article 

    Google Scholar 

  • 69.

    Griskevicius, V. et al. The financial consequences of too many men: Sex ratio effects on saving, borrowing, and spending. J. Pers. Soc. Psychol. 102, 69–80 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Jirotkul, M. Operational sex ratio influences female preference and male-male competition in guppies. Anim. Behav. 58, 287–294 (1999).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 71.

    Liker, A., Freckleton, R. P. & Székely, T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 24, 880–884 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 72.

    Schacht, R., Kramer, K. L., Székely, T. & Kappeler, P. M. Adult sex ratios and reproductive strategies: A critical re-examination of sex differences in human and animal societies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160309 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Székely, Á. & Székely, T. Human behaviour: Sex ratio and the city. Curr. Biol. 22, 684–685 (2012).

    Article 
    CAS 

    Google Scholar 

  • 74.

    Székely, T., Liker, A., Freckleton, R. P., Fichtel, C. & Kappeler, P. M. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B Biol. Sci. 281, 20140342–20140342 (2014).

    Article 

    Google Scholar 

  • 75.

    Grant, P. R. & Grant, B. R. Adult sex ratio influences mate choice in Darwin’s finches. Proc. Natl. Acad. Sci. U. S. A. 116, 12373–12382 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Procter, D. S., Moore, A. J. & Miller, C. W. The form of sexual selection arising from male-male competition depends on the presence of females in the social environment. J. Evol. Biol. 25, 803–812 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 77.

    Janicke, T. & Morrow, E. H. Operational sex ratio predicts the opportunity and direction of sexual selection across animals. Ecol. Lett. https://doi.org/10.1111/ele.12907 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Wolf, K. N. et al. Age-dependent changes in sperm production, semen quality, and testicular volume in the black-footed ferret (Mustela nigripes). Biol. Reprod. 63, 179–187 (2000).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 79.

    Gasparini, C., Marino, I. A. M., Boschetto, C. & Pilastro, A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J. Evol. Biol. 23, 124–135 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Chargé, R., Jalme, M. S., Lacroix, F., Cadet, A. & Sorci, G. Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. J. Anim. Ecol. 79, 843–850 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Ramirez, M. E. V., Le Pennec, M., Dorange, G., Devauchelle, N. & Nonnotte, G. Assessment of female gamete quality in the pacific oyster crassostrea gigas. Invertebr. Reprod. Dev. 36, 73–78 (1999).

    Article 

    Google Scholar 

  • 82.

    Berger, T. & Horner, C. M. In vivo exposure of female rats to toxicants may affect oocyte quality. Reprod. Toxicol. 17, 273–281 (2003).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 83.

    Dufour, J. J., Fahmy, M. H. & Minvielle, F. Seasonal changes in breeding activity, testicular size, testosterone concentration and seminal characteristics in rams with long or short breeding season. J. Anim. Sci. 58, 416–422 (1984).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 84.

    Gorman, M. R. & Zucker, I. Seasonal adaptations of siberian hamsters: II: Pattern of change in day length controls annual testicular and body weight rhythms. Biol. Reprod. 53, 116–125 (1995).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 85.

    Parker, G. A. & Begon, M. Optimal egg size and clutch size: Effects of environment and maternal Phenotype. Am. Nat. 128, 573–592 (1986).

    Article 

    Google Scholar 

  • 86.

    Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).

    Article 

    Google Scholar 

  • 87.

    Tallamy, D. W. Sexual selection and the evolution of exclusive paternal care in arthropods. Anim. Behav. 60, 559–567 (2000).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 88.

    Olson, V. A., Webb, T. J., Freckleton, R. P. & Székely, T. Are parental care trade-offs in shorebirds driven by parental investment or sexual selection?. J. Evol. Biol. 22, 672–682 (2009).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 89.

    Reynolds, J. D. & Székely, T. The evolution of parental care in shorebirds: Life histories, ecology, and sexual selection. Behav. Ecol. 8, 126–134 (1995).

    Article 

    Google Scholar 

  • 90.

    Balshine-Earn, S. & Earn, D. J. D. On the evolutionary pathway of parental care in mouth-brooding cichlid fish. Proc. R. Soc. B Biol. Sci. 265, 2217–2222 (1998).

    Article 

    Google Scholar 

  • 91.

    Ah-King, M., Kvarnemo, C. & Tullberg, B. S. The influence of territoriality and mating system on the evolution of male care: A phylogenetic study on fish. J. Evol. Biol. 18, 371–382 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 92.

    Székely, T., Webb, J. N. & Cutchill, I. C. Mating patterns, sexual selection and parental care: An integrative approach. Vertebrate Mat. Syst. https://doi.org/10.1142/9789812793584_0008 (2000).

    Article 

    Google Scholar 

  • 93.

    Trivers, R. L. Parental investment and sexual selection. (1972).

  • 94.

    Keenleyside, M. H. A. Mate desertion in relation to adult sex ratio in the biparental cichlid fish Herotilapia multispinosa. Anim. Behav. 31, 683–688 (1983).

    Article 

    Google Scholar 

  • 95.

    Alonzo, S. H. Social and coevolutionary feedbacks between mating and parental investment. Trends Ecol. Evol. 25, 99–108 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 96.

    Houston, A. I., Székely, T. & McNamara, J. M. Conflict between parents over care. Trends Ecol. Evol. 20, 33–38 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 97.

    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).

    Book 

    Google Scholar 

  • 98.

    Liker, A. & Szekely, T. Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59, 890–897 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 99.

    Emlen, S. T. Lek organization and mating strategies in the bullfrog. Behav. Ecol. Sociobiol. 1, 283–313 (1976).

    Article 

    Google Scholar 

  • 100.

    Weir, L. K., Grant, J. W. A. & Hutchings, J. A. The influence of operational sex ratio on the intensity of competition for mates. Am. Nat. 177, 167–176 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Orians, G. H. On the evolution of mating systems in birds and mammals. Am. Nat. 103, 589–603 (1969).

    Article 

    Google Scholar 

  • 102.

    Carmona-Isunza, M. C. et al. Adult sex ratio and operational sex ratio exhibit different temporal dynamics in the wild. Behav. Ecol. 28, 523–532 (2017).

    Google Scholar 

  • 103.

    Wikelski, M., Trillmich, F. & Jun, N. Body size and sexual size dimorphism in marine iguanas fluctuate as a result of opposing natural and sexual selection: An island comparison. Evolution 51, 922–936 (1997).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl. Acad. Sci. 101, 12224–12227 (2004).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 105.

    Kelly, C. D., Bussière, L. F. & Gwynne, D. T. Sexual selection for male mobility in a giant insect with female-biased size dimorphism. Am. Nat. 172, 417–423 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 106.

    Kotiaho, J., Alatalo, R. V., Mappes, J. & Parri, S. Sexual selection in a wolf spider: Male drumming activity, body size, and viability. Evolution 50, 1977 (1996).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 1–8 (2019).

    Article 
    CAS 

    Google Scholar 

  • 108.

    Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).

    Article 

    Google Scholar 

  • 109.

    Bakewell, A. T., Davis, K. E., Freckleton, R. P., Isaac, N. J. B. & Mayhew, P. J. Comparing life histories across taxonomic groups in multiple dimensions: How mammal-like are insects?. Am. Nat. 195, 70–81 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 110.

    del Villalobos-Segura, M. C., García-Prieto, L. & Rico-Chávez, O. Effects of latitude, host body size, and host trophic guild on patterns of diversity of helminths associated with humans, wild and domestic mammals of Mexico. Int. J. Parasitol. Parasites Wildl. 13, 221–230 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Pandit, P. S. et al. Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat. Commun. 9, 1–10 (2018).

    Article 
    CAS 

    Google Scholar 

  • 112.

    Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).

    Article 

    Google Scholar 

  • 113.

    Capdevila, P. et al. Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial life-history strategies. Funct. Ecol. 34, 1613–1625 (2020).

    Article 

    Google Scholar 

  • 114.

    Ellington, E. H. et al. Using multiple imputation to estimate missing data in meta-regression. Methods Ecol. Evol. 6, 153–163 (2015).

    Article 

    Google Scholar 

  • 115.

    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): New models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).

    Article 

    Google Scholar 

  • 117.

    Onkelinx, T., Devos, K. & Quataert, P. Working with population totals in the presence of missing data comparing imputation methods in terms of bias and precision. J. Ornithol. 158, 603–615 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The language of change

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya