in

Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can be recognized by ant mutualists

  • 1.

    Gibbs, A. G. & Rajpurohit, S. Cuticular lipids and water balance. in Insect hydrocarbons: biology, biochemistry, and chemical ecology 100–120 (Cambridge University Press Cambridge, UK, 2010). https://doi.org/10.1017/CBO9780511711909.007

  • 2.

    Pedrini, N., Ortiz-Urquiza, A., Zhang, S. & Keyhani, N. O. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 4, 24 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Lang, C. & Menzel, F. Lasius niger ants discriminate aphids based on their cuticular hydrocarbons. Anim. Behav. 82, 1245–1254 (2011).

    Article 

    Google Scholar 

  • 5.

    Sakata, I., Hayashi, M. & Nakamuta, K. Tetramorium tsushimae ants use methyl branched hydrocarbons of aphids for partner recognition. J. Chem. Ecol. 43, 966–970 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Salazar, A. et al. Aggressive mimicry coexists with mutualism in an aphid. Proc. Natl. Acad. Sci. 112, 1101–1106 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Endo, S. & Itino, T. The aphid-tending ant Lasius fuji exhibits reduced aggression toward aphids marked with ant cuticular hydrocarbons. Popul. Ecol. 54, 405–410 (2012).

    Article 

    Google Scholar 

  • 8.

    Endo, S. & Itino, T. Myrmecophilous aphids produce cuticular hydrocarbons that resemble those of their tending ants. Popul. Ecol. 55, 27–34 (2013).

    Article 

    Google Scholar 

  • 9.

    Stadler, B. & Dixon, A. F. G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36, 345–372 (2005).

    Article 

    Google Scholar 

  • 10.

    Schillewaert, S. et al. The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid Aphis fabae. Physiol. Entomol. 42, 125–133 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Douglas, A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).

    Article 

    Google Scholar 

  • 14.

    Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B Biol. Sci. 273, 603–610 (2005).

    Article 

    Google Scholar 

  • 15.

    Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).

    Article 

    Google Scholar 

  • 16.

    Scarborough, C. L., Ferrari, J. & Godfray, H. C. J. Aphid protected from pathogen by endosymbiont. Science 310, 1781 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Łukasik, P., van Asch, M., Guo, H., Ferrari, J. & Godfray, H. C. J. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol. Lett. 16, 214–218 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. 100, 1803–1807 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Vorburger, C., Gehrer, L. & Rodriguez, P. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol. Lett. 6, 109–111 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Vorburger, C. & Gouskov, A. Only helpful when required: a longevity cost of harbouring defensive symbionts. J. Evol. Biol. 24, 1611–1617 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Vorburger, C., Ganesanandamoorthy, P. & Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 3, 706–713 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Gwynn, D. M., Callaghan, A., Gorham, J., Walters, K. F. A. & Fellowes, M. D. E. Resistance is costly: trade-offs between immunity, fecundity and survival in the pea aphid. Proc. R. Soc. B Biol. Sci. 272, 1803–1808 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B Biol. Sci. 275, 293–299 (2008).

    Article 

    Google Scholar 

  • 24.

    Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 3, 850–861 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Degnan, P. H., Yu, Y., Sisneros, N., Wing, R. A. & Moran, N. A. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc. Natl. Acad. Sci. 106, 9063–9068 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Ankrah, N. Y. D., Luan, J. & Douglas, A. E. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling. J. Bacteriol. 199, e00872-e916 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Herren, J. K. et al. Insect endosymbiont proliferation is limited by lipid availability. Elife 3, e02964 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Hamilton, R. J. Waxes: Chemistry, Molecular Biology and Functions (Insect Waxes. Oily Press, 1995).

    Google Scholar 

  • 29.

    Blailock, T. T., Blomquist, G. J. & Jackson, L. L. Biosynthesis of 2-methylalkanes in the crickets: Nemobiusfasciatus and Grylluspennsylvanicus. Biochem. Biophys. Res. Commun. 68, 841–849 (1976).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Engl, T. et al. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol. 18, 145 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Schneider, D. I. et al. Symbiont-driven male mating success in the Neotropical Drosophila paulistorum superspecies. Behav. Genet. 49, 83–98 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    de Souza, D. J., Devers, S. & Lenoir, A. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization. C. R. Biol. 334, 737–741 (2011).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Richard, F.-J. Symbiotic bacteria influence the odor and mating preference of their hosts. Front. Ecol. Evol. 5, 143 (2017).

    Article 

    Google Scholar 

  • 35.

    Fischer, M. K. & Shingleton, A. W. Host plant and ants influence the honeydew sugar composition of aphids. Funct. Ecol. 15, 544–550 (2001).

    Article 

    Google Scholar 

  • 36.

    Yao, I. & Akimoto, S. Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128, 36–43 (2001).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Yao, I. & Akimoto, S. Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol. Entomol. 27, 745–752 (2002).

    Article 

    Google Scholar 

  • 38.

    Offenberg, J. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav. Ecol. Sociobiol. 49, 304–310 (2001).

    Article 

    Google Scholar 

  • 39.

    Stadler, B. & Dixon, A. F. G. Ant attendance in aphids: why different degrees of myrmecophily?. Ecol. Entomol. 24, 363–369 (1999).

    Article 

    Google Scholar 

  • 40.

    Vantaux, A., Van den Ende, W., Billen, J. & Wenseleers, T. Large interclone differences in melezitose secretion in the facultatively ant-tended black bean aphid Aphis fabae. J. Insect. Physiol. 57, 1614–1621 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Moran, N. A., Russell, J. A., Koga, R. & Fukatsu, T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl. Environ. Microbiol. 71, 3302–3310 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Molloy, J. C., Sommer, U., Viant, M. R. & Sinkins, S. P. Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl. Environ. Microbiol. 82, 3109–3120 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Paredes, J. C., Herren, J. K., Schüpfer, F. & Lemaitre, B. The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. MBio 7, e01006-e1016 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Chung, H. & Carroll, S. B. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37, 822–830 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Bos, N. et al. Learning and perceptual similarity among cuticular hydrocarbons in ants. J. Insect Physiol. 58, 138–146 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    van Wilgenburg, E. et al. Learning and discrimination of cuticular hydrocarbons in a social insect. Biol. Lett. 8, 17–20 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Oberhauser, F. B., Koch, A. & Czaczkes, T. J. Small differences in learning speed for different food qualities can drive efficient collective foraging in ant colonies. Behav. Ecol. Sociobiol. 72, 164 (2018).

    Article 

    Google Scholar 

  • 48.

    Erickson, D. M., Wood, E. A., Oliver, K. M., Billick, I. & Abbot, P. The effect of ants on the population dynamics of a protective symbiont of aphids, Hamiltonella defensa. Ann. Entomol. Soc. Am. 105, 447–453 (2012).

    Article 

    Google Scholar 

  • 49.

    Schmidt, M. H. et al. Relative importance of predators and parasitoids for cereal aphid control. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 270, 1905–1909 (2003).

    Article 

    Google Scholar 

  • 50.

    Łukasik, P., Dawid, M. A., Ferrari, J. & Godfray, H. C. J. The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 173, 985–996 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Oliver, K. M. et al. Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol. 10, 11 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Dennis, A. B., Patel, V., Oliver, K. M. & Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 71, 2599–2617 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Guo, J. et al. Nine facultative endosymbionts in aphids, a review. J. Asia. Pac. Entomol. 20, 794–801 (2017).

    Article 

    Google Scholar 

  • 54.

    Vorburger, C., Sandrock, C., Gouskov, A., Castañeda, L. E. & Ferrari, J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host–parasitoid interaction. Evol. Int. J. Org. Evol. 63, 1439–1450 (2009).

    Article 

    Google Scholar 

  • 55.

    Carlson, D. A., Bernier, U. R. & Sutton, B. D. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24, 1845–1865 (1998).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Katritzky, A. R., Chen, K., Maran, U. & Carlson, D. A. QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal. Chem. 72, 101–109 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • 58.

    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley Statsref. Stat. Ref. https://doi.org/10.1002/9781118445112.stat07841 (2014).

    Article 

    Google Scholar 

  • 61.

    Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).

    Article 

    Google Scholar 

  • 62.

    Arbizu, P. M. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis (2017).

  • 63.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Illegal mining in the Amazon hits record high amid Indigenous protests

    Molecular basis of a bacterial-amphibian symbiosis revealed by comparative genomics, modeling, and functional testing