in

Mauritia flexuosa palm trees airborne mapping with deep convolutional neural network

  • 1.

    Nãsi, R. et al. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens. 7, 15467–15493. https://doi.org/10.3390/rs71115467 (2015).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Navarro, A. et al. The application of unmanned aerial vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens. Environ. 242, 111747. https://doi.org/10.1016/j.rse.2020.111747 (2020).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Reis, B. P. et al. Management recommendation generation for areas under forest restoration process through images obtained by UAV and LiDAR. Remote Sens. 11, 1508. https://doi.org/10.3390/rs11131508 (2019).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Saarinen, N. et al. Assessing biodiversity in boreal forests with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 10, 338. https://doi.org/10.3390/rs10020338 (2018).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Casapia, X. T. et al. Identifying and quantifying the abundance of economically important palms in tropical moist forest using UAV imagery. Remote Sens. 12, 9. https://doi.org/10.3390/rs12010009 (2019).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Li, L. et al. Quantifying understory and overstory vegetation cover using UAV-based RGB imagery in forest plantation. Remote Sens. 12, 298. https://doi.org/10.3390/rs12020298 (2020).

    ADS 
    Article 

    Google Scholar 

  • 7.

    dos Santos, A. A. et al. Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors 19, 3595. https://doi.org/10.3390/s19163595 (2019).

    ADS 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Miyoshi, G. T., Imai, N. N., Tommaselli, A. M. G., de Moraes, M. V. A. & Honkavaara, E. Evaluation of hyperspectral multitemporal information to improve tree species identification in the highly diverse Atlantic forest. Remote Sens. 12, 244. https://doi.org/10.3390/rs12020244 (2020).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Morales, G. et al. Automatic segmentation of Mauritia flexuosa in unmanned aerial vehicle (UAV) imagery using deep learning. Forests 9, 736. https://doi.org/10.3390/f9120736 (2018).

    Article 

    Google Scholar 

  • 10.

    Voss, M. & Sugumaran, R. Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object- oriented approach. Sensors 8, 3020–3036. https://doi.org/10.3390/s8053020 (2008).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Andersen, H.-E., Reutebuch, S. E. & McGaughey, R. J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can. J. Remote Sens. 32, 355–366. https://doi.org/10.5589/m06-030 (2006).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Ganz, S., Käber, Y. & Adler, P. Measuring tree height with remote sensing—A comparison of photogrammetric and LiDAR data with different field measurements. Forests 10, 694. https://doi.org/10.3390/f10080694 (2019).

    Article 

    Google Scholar 

  • 13.

    Csillik, O., Cherbini, J., Johnson, R., Lyons, A. & Kelly, M. Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones 2, 39. https://doi.org/10.3390/drones2040039 (2018).

    Article 

    Google Scholar 

  • 14.

    Berveglieri, A., Imai, N. N., Tommaselli, A. M., Casagrande, B. & Honkavaara, E. Successional stages and their evolution in tropical forests using multi-temporal photogrammetric surface models and superpixels. ISPRS J. Photogram. Remote Sens. 146, 548–558. https://doi.org/10.1016/j.isprsjprs.2018.11.002 (2018).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Cao, J. et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 10, 89. https://doi.org/10.3390/rs10010089 (2018).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A. & White, E. Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sens. 11, 1309. https://doi.org/10.3390/rs11111309 (2019).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Torres, D. L. et al. Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery. Sensors 20, 563. https://doi.org/10.3390/s20020563 (2020).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Liu, L., Song, B., Zhang, S. & Liu, X. A novel principal component analysis method for the reconstruction of leaf reflectance spectra and retrieval of leaf biochemical contents. Remote Sens. 9, 1113. https://doi.org/10.3390/rs9111113 (2017).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Maschler, J., Atzberger, C. & Immitzer, M. Individual tree crown segmentation and classification of 13 tree species using airborne hyperspectral data. Remote Sens. 10, 1218. https://doi.org/10.3390/rs10081218 (2018).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Hennessy, A., Clarke, K. & Lewis, M. Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sens. 12, 113. https://doi.org/10.3390/rs12010113 (2020).

    Article 

    Google Scholar 

  • 21.

    Hamraz, H., Contreras, M. A. & Zhang, J. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds. Sci. Rep. 7, 1–9. https://doi.org/10.1038/s41598-017-07200-0 (2017).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Cho, M. A. et al. Mapping tree species composition in south African savannas using an integrated airborne spectral and LiDAR system. Remote Sens. Environ. 125, 214–226. https://doi.org/10.1016/j.rse.2012.07.010 (2012).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Apostol, B. et al. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery. Sci. Total Environ. 698, 134074. https://doi.org/10.1016/j.scitotenv.2019.134074 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Immitzer, M., Atzberger, C. & Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 4, 2661–2693. https://doi.org/10.3390/rs4092661 (2012).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Franklin, S. E. & Ahmed, O. S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data. Int. J. Remote Sens. 39, 5236–5245. https://doi.org/10.1080/01431161.2017.1363442 (2017).

    Article 

    Google Scholar 

  • 26.

    Dalponte, M., Orka, H. O., Gobakken, T., Gianelle, D. & Naesset, E. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 51, 2632–2645. https://doi.org/10.1109/tgrs.2012.2216272 (2013).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Guimarães, N. et al. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 12, 1046. https://doi.org/10.3390/rs12061046 (2020).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Kattenborn, T., Eichel, J. & Fassnacht, F. E. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-53797-9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Onishi, M. & Ise, T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598-020-79653-9 (2021).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Näsi, R. et al. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 30, 72–83. https://doi.org/10.1016/j.ufug.2018.01.010 (2018).

    Article 

    Google Scholar 

  • 31.

    Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I. & Honkavaara, E. Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sens. 12, 1070. https://doi.org/10.3390/rs12071070 (2020).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Nevalainen, O. et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 9, 185. https://doi.org/10.3390/rs9030185 (2017).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Raczko, E. & Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 50, 144–154. https://doi.org/10.1080/22797254.2017.1299557 (2017).

    Article 

    Google Scholar 

  • 34.

    Tuominen, S. et al. Assessment of classifiers and remote sensing features of hyperspectral imagery and stereo-photogrammetric point clouds for recognition of tree species in a forest area of high species diversity. Remote Sens. 10, 714. https://doi.org/10.3390/rs10050714 (2018).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Xie, Z., Chen, Y., Lu, D., Li, G. & Chen, E. Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data. Remote Sens. 11, 164. https://doi.org/10.3390/rs11020164 (2019).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Maxwell, A. E., Warner, T. A. & Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens. 39, 2784–2817. https://doi.org/10.1080/01431161.2018.1433343 (2018).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Osco, L. P. et al. Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sens. 11, 2925. https://doi.org/10.3390/rs11242925 (2019).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Marrs, J. & Ni-Meister, W. Machine learning techniques for tree species classification using co-registered LiDAR and hyperspectral data. Remote Sens. 11, 819. https://doi.org/10.3390/rs11070819 (2019).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Imangholiloo, M. et al. Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle. Forests 10, 415. https://doi.org/10.3390/f10050415 (2019).

    Article 

    Google Scholar 

  • 40.

    Pham, T., Yokoya, N., Bui, D., Yoshino, K. & Friess, D. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sens. 11, 230. https://doi.org/10.3390/rs11030230 (2019).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Ma, L. et al. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogram. Remote Sens. 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015 (2019).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Safonova, A. et al. Detection of fir trees (Abies sibirica) damaged by the bark beetle in unmanned aerial vehicle images with deep learning. Remote Sens. 11, 643. https://doi.org/10.3390/rs11060643 (2019).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016 (2018).

    Article 

    Google Scholar 

  • 44.

    Khamparia, A. & Singh, K. M. A systematic review on deep learning architectures and applications. Exp. Syst. 36, e12400. https://doi.org/10.1111/exsy.12400 (2019).

    Article 

    Google Scholar 

  • 45.

    Sothe, C. et al. Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. GISci. Remote Sens. 57, 369–394. https://doi.org/10.1080/15481603.2020.1712102 (2020).

    Article 

    Google Scholar 

  • 46.

    Redmon, J. & Farhadi, A. Yolov3: An incremental improvement (2018). arXiv:1804.02767.

  • 47.

    Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal loss for dense object detection (2018). arXiv:1708.02002

  • 48.

    Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks (2016). arXiv:1506.01497

  • 49.

    Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition (2015). arXiv:1409.1556

  • 50.

    Sylvain, J.-D., Drolet, G. & Brown, N. Mapping dead forest cover using a deep convolutional neural network and digital aerial photography. ISPRS J. Photogram. Remote Sens. 156, 14–26. https://doi.org/10.1016/j.isprsjprs.2019.07.010 (2019).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M. & Carron, J. Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning. Sensors 19, 1284. https://doi.org/10.3390/s19061284 (2019).

    ADS 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Culman, M., Delalieux, S. & Tricht, K. V. Individual palm tree detection using deep learning on RGB imagery to support tree inventory. Remote Sens. 12, 3476. https://doi.org/10.3390/rs12213476 (2020).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Aburasain, R. Y., Edirisinghe, E. A. & Albatay, A. Palm tree detection in drone images using deep convolutional neural networks: Investigating the effective use of YOLO v3. In Digital Interaction and Machine Intelligence, 21–36, https://doi.org/10.1007/978-3-030-74728-2_3 (Springer International Publishing, 2021).

  • 54.

    Bortolotto, I. M., Damasceno-Junior, G. A. & Pott, A. Preliminary list of native food plants from mato grosso do sul, brazil. Iheringia, Série Botânica 73, 101–116 (2018). https://doi.org/10.21826/2446-8231201873s101

  • 55.

    van der Hoek, Y., Solas, S. Á. & Peñuela, M. C. The palm Mauritia flexuosa, a keystone plant resource on multiple fronts. Biodiver. Conserv. 28, 539–551. https://doi.org/10.1007/s10531-018-01686-4 (2019).

    Article 

    Google Scholar 

  • 56.

    Agostini-Costa, T. d. S., Faria, J. P., Naves, R. V. & Vieira, R. F. Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial Plantas para o Futuro – Região Centro-Oeste (Ministério do Meio Ambiente – MMA, 2016).

  • 57.

    Djerriri, K., Ghabi, M., Karoui, M. S. & Adjoudj, R. Palm trees counting in remote sensing imagery using regression convolutional neural network. In IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 2627–2630 (2018). https://doi.org/10.1109/IGARSS.2018.8519188

  • 58.

    Osco, L. P. et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogram. Remote Sens. 160, 97–106. https://doi.org/10.1016/j.isprsjprs.2019.12.010 (2020).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Goldman, E. et al. Precise detection in densely packed scenes (2019). arXiv:1904.00853

  • 60.

    Holm, J. A., Miller, C. J. & Cropper, W. P. Population dynamics of the dioecious amazonian palm Mauritia flexuosa: Simulation analysis of sustainable harvesting. Biotropica 40, 550–558. https://doi.org/10.1111/j.1744-7429.2008.00412.x (2008).

    Article 

    Google Scholar 

  • 61.

    Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network (2017). arXiv:1612.01105


  • Source: Ecology - nature.com

    For campus “porosity hunters,” climate resilience is the goal

    New “risk triage” platform pinpoints compounding threats to US infrastructure