Raup, D. M. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206, 217–218 (1979).
Google Scholar
Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. U. S. A. 113, E6325–E6334 (2016).
Google Scholar
Sepkoski, J. J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981).
Google Scholar
Tozer, E. T. Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geol. Rundschau 71, 1077–1104 (1982).
Google Scholar
Hallam, A. Major bio-events in the Triassic and Jurassic. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser O.H.) 265–283 (Springer, 1996).
Brayard, A. et al. Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).
Google Scholar
Stanley, S. M. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proc. Natl. Acad. Sci. U. S. A. 106, 15264–15267 (2009).
Google Scholar
Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).
Google Scholar
Friesenbichler, E., Hautmann, M., Nützel, A., Urlichs, M. & Bucher, H. Palaeoecology of Late Ladinian (Middle Triassic) benthic faunas from the Schlern/Sciliar and Seiser Alm/Alpe di Siusi area (South Tyrol, Italy). Pal. Z. 93, 1–29 (2019).
Zhao, X. et al. Recovery of lacustrine ecosystems after the end-Permian mass extinction. Geology 48, 609–613 (2020).
Google Scholar
Friesenbichler, E., Hautmann, M. & Bucher, H. The main stage of recovery after the end-Permian mass extinction: Taxonomic rediversification and ecologic reorganization of marine level-bottom communities during the Middle Triassic. PeerJ 9, e11654 (2021).
Google Scholar
Twitchett, R. J. Incompleteness of the Permian-Triassic fossil record: A consequence of productivity decline?. Geol. J. 36, 341–353 (2001).
Google Scholar
Foster, W. J. & Twitchett, R. J. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat. Geosci. 7, 233–238 (2014).
Google Scholar
Hu, S. et al. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proc. R. Soc. London B 278, 2274–2282 (2011).
Brayard, A. et al. Unexpected Early Triassic marine ecosystem and the rise of the modern evolutionary fauna. Sci. Adv. 3, e1602159 (2017).
Google Scholar
Widmann, P. et al. Dynamics of the largest carbon isotope excursion during the Early Triassic biotic recovery. Front. Earth Sci. 8, 196 (2020).
Google Scholar
Brayard, A. et al. The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 374–395 (2006).
Google Scholar
Jattiot, R. et al. Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western USA basin and its controlling parameters. Palaeontology 61, 881–904 (2018).
Google Scholar
Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117 (2007).
Google Scholar
Zhang, L. et al. The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria. Earth Sci. Rev. 195, 7–36 (2019).
Google Scholar
Goudemand, N. et al. Dynamic interplay between climate and marine biodiversity upheavals during the Early Triassic Smithian -Spathian biotic crisis. Earth Sci. Rev. 195, 169–178 (2019).
Google Scholar
Kashiyama, Y. & Oji, T. Low-diversity shallow marine benthic fauna from the Smithian of northeast Japan: Paleoecologic and paleobiogeographic implications. Pal. Res. 8, 199–218 (2004).
Google Scholar
Hautmann, M. et al. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44, 71–85 (2011).
Google Scholar
Hofmann, R. et al. Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology 57, 547–589 (2014).
Google Scholar
Foster, W. J. et al. Early Triassic benthic invertebrates from the Great Bank of Guizhou, South China: Systematic palaeontology and palaeobiology. Pap. Pal. 5, 613–656 (2019).
Google Scholar
Hautmann, M. et al. Competition in slow motion: The unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology 58, 871–901 (2015).
Google Scholar
Schaeffer, B., Mangus, M. & Laudon, L. R. An Early Triassic fish assemblage from British Columbia. Bull. AMNH. 156, article 5. (1976).
Tintori, A., Hitij, T., Jiang, D., Lombardo, C. & Sun, Z. Triassic actinopterygian fishes: the recovery after the end-Permian crisis. Integr. Zool. 9, 394–411 (2014).
Google Scholar
Neuman, A. G. Fishes from the Lower Triassic portion of the Sulphur Mountain Formation in Alberta, Canada: Geological context and taxonomic composition. Can. J. Earth Sci. 52, 557–568 (2015).
Google Scholar
Romano, C. et al. Permian-Triassic Osteichthyes (bony fishes): Diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).
Google Scholar
Qiu, X. et al. The Early Triassic Jurong fish fauna, South China: Age, anatomy, taphonomy, and global correlation. Glob. Planet. Change 180, 33–50 (2019).
Google Scholar
Li, Q. & Liu, J. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Commun. Biol. 3, 63 (2020).
Google Scholar
Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Sci. Adv. 4, eaat5091 (2018).
Google Scholar
Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).
Google Scholar
Lucas, S. G., Krainer, K. & Milner, A. R. C. The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. New Mexico Mus. Nat. Hist. Sci. Bull. 40, 109–117 (2007).
Caravaca, G. et al. Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western USA). Geol. Mag. 155, 1305–1329 (2018).
Google Scholar
Brayard, A., Jenks, J. F., Bylund, K. G. & the Paris Biota team. Ammonoids and nautiloids from the earliest Spathian Paris Biota and other early Spathian localities in southeastern Idaho, USA. Geobios 54, 13–36 (2019).
Google Scholar
Lucas, S. G. & Orchard, M. J. Triassic lithostratigraphiy and biostratigraphy North of Currie, Elko County, Nevada. New Mexico Mus. Nat. Hist. Sci. Bull. 40, 119–126 (2007).
Guex, J. et al. Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mémoires de Géologie (Lausanne) 49, (2010).
Doguzhaeva, L. et al. An Early Triassic gladius associated with soft tissue remains from Idaho, USA: A squid-like coleoid cephalopod at the onset of Mesozoic Era. Acta Pal. Pol. 63, 341–355 (2018).
Laville, T., Smith, C. P. A., Forel, M.-B., Brayard, A. & Charbonnier, S. Review of Early Triassic Thylacocephala. Riv. Italiana Pal. Sed. 127, 73–101 (2021).
Charbonnier, S., Brayard, A. & the Paris Biota team. New thylacocephalans from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 37–43 (2019).
Google Scholar
Roopnarine, P. Graphs, networks, extinction and paleocommunity food webs. Nat. Prec. https://doi.org/10.1038/npre.2010.4433.1 (2010).
Google Scholar
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Google Scholar
Shi, G. R. & Zwan, L.-P. A mixed mid-Permian marine fauna from the Yanji area, northeastern China: A paleobiogeographical reinterpretation. Isl. Arc. 5, 386–395 (1996).
Google Scholar
Chen, Z.-Q., Tong, J., Liao, Z.-T. & Chen, J. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath. Glob. Planet. Change 73, 123–140 (2010).
Google Scholar
Massare, J. A. & Callaway, J. M. Cymbospondylus (Ichthyosauria: Shastasauridae) from the Lower Triassic Thaynes Formation of southeastern Idaho. J. Vertebr. Paleontol. 14, 139–141 (1994).
Google Scholar
Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early Triassic marine biotic recovery: The predators’ perspective. PLoS ONE 9, e88987 (2014).
Google Scholar
Song, H. et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39, 739–742 (2011).
Google Scholar
Brayard, A., Gueriau, P., Thoury, M., Escarguel, G. & the Paris Biota team. Glow in the dark: Use of synchrotron μXRF trace elemental mapping and multispectral macro-imaging on fossils from the Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 71–79 (2019).
Google Scholar
Iniesto, M., Thomazo, C. & Fara, E. Deciphering the exceptional preservation of the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 81–93 (2019).
Google Scholar
Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skrif. 5, 3–34 (1948).
Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. An. Ecol. 72, 367–382 (2003).
Google Scholar
Romano, C., Kogan, I., Jenks, J., Jerjen, I. & Brinkmann, W. Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bull. Geosci. 3, 543–570. https://doi.org/10.3140/bull.geosci.1337 (2012).
Google Scholar
Horton, J. D. The State Geologic Map Compilation (SGMC) Geodatabase of the conterminous United States: US Geological Survey data release. US Geol. Surv. https://doi.org/10.5066/F7WH2N65 (2017).
Google Scholar
Kummel, B. The Thaynes Formation, Bear Lake Valley, Idaho. Am. J. Sci. 241, 316–332 (1943).
Google Scholar
Kummel, B. Triassic stratigraphy of Southeastern Idaho and adjacent areas. U. S. Geol. Surv. Prof. Pap. 254H, 165–194 (1954).
Brayard, A., Brühwiler, T., Bucher, H. & Jenks, J. Guodunites, a low-palaeolatitude and trans-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology 52, 471–481 (2009).
Google Scholar
Brayard, A. et al. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J. Palaeontol. 132, 141–219 (2013).
Google Scholar
Jenks, J. et al. Ammonoid biostratigraphy of the Early Spathian Columbites parisianus zone (Early Triassic) at Bear Lake Hot Springs Idaho. New Mexico Mus. Natl. Hist. Sci. Bull. 61, 268–283 (2013).
Source: Ecology - nature.com