in

Specialization of a mobile, apex predator affects trophic coupling among adjacent habitats

  • 1.

    Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Rosenblatt, A. E. & Heithaus, M. R. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages?. J. Anim. Ecol. 80, 786–798 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Pringle, R. M. & Fox-Dobbs, K. Coupling of canopy and understory food webs by ground-dwelling predators. Ecol. Lett. 11, 1328–1337 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).

    Article 

    Google Scholar 

  • 5.

    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269. https://doi.org/10.1038/nature04887 (2006).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Schindler, D. E. & Scheuerell, M. D. Habitat coupling in lake ecosystems. Oikos 98, 177–189 (2002).

    Article 

    Google Scholar 

  • 9.

    Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Conway-Cranos, L. et al. Stable isotopes and oceanographic modeling reveal spatial and trophic connectivity among terrestrial, estuarine, and marine environments. Mar. Ecol. Prog. Ser. 533, 15–28 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Dias, E., Morais, P., Cotter, A. M., Antunes, C. & Hoffman, J. C. Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs. Mar. Ecol. Prog. Ser. 554, 21–34 (2016).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Hobson, K. A., Ambrose, W. G. Jr. & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: Insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    McPeek, M. A. Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am. Nat. 148, S124–S138 (1996).

    Article 

    Google Scholar 

  • 16.

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Rossman, S. et al. Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary. Oecologia 178, 415–425 (2015).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Rossman, S. et al. Foraging habits in a generalist predator: Sex and age influence habitat selection and resource use among bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 31, 155–168 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Sargeant, B. L. & Mann, J. Developmental evidence for foraging traditions in wild bottlenose dolphins. Anim. Behav. 78, 715–721 (2009).

    Article 

    Google Scholar 

  • 22.

    Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).

    Article 

    Google Scholar 

  • 23.

    Silva, M. A. et al. Ranging patterns of bottlenose dolphins living in oceanic waters: Implications for population structure. Mar. Biol. 156, 179–192 (2008).

    Article 

    Google Scholar 

  • 24.

    Tobeña, M. et al. Inter-island movements of common bottlenose dolphins Tursiops truncatus among the Canary Islands: Online catalogues and implications for conservation and management. Afr. J. Mar. Sci. 36, 137–141 (2014).

    Article 

    Google Scholar 

  • 25.

    Wells, R. S. & Scott, M. D. Encyclopedia of Marine Mammals 249–255 (Elsevier, 2009).

    Book 

    Google Scholar 

  • 26.

    Wells, R. S. et al. Ranging patterns of common bottlenose dolphins Tursiops truncatus in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 159–180 (2017).

    Article 

    Google Scholar 

  • 27.

    Zolman, E. S. Residence patterns of bottlenose dolphins (Tursiops truncatus) in the Stono River estuary, Charleston County, South Carolina, USA. Mar. Mamm. Sci. 18, 879–892 (2002).

    Article 

    Google Scholar 

  • 28.

    Wilson, R. M. et al. Niche differentiation and prey selectivity among common bottlenose dolphins (Tursiops truncatus) sighted in St. George Sound, Gulf of Mexico. Front. Mar. Sci. 4, 235 (2017).

    Article 

    Google Scholar 

  • 29.

    Wells, R. S. Primates and Cetaceans 149–172 (Springer, 2014).

    Book 

    Google Scholar 

  • 30.

    Urian, K. W., Hofmann, S., Wells, R. S. & Read, A. J. Fine-scale population structure of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida. Mar. Mamm. Sci. 25, 619–638 (2009).

    Article 

    Google Scholar 

  • 31.

    Wilson, R., Nelson, J., Balmer, B., Nowacek, D. & Chanton, J. Stable isotope variation in the northern Gulf of Mexico constrains bottlenose dolphin (Tursiops truncatus) foraging ranges. Mar. Biol. 160, 2967–2980 (2013).

    Article 

    Google Scholar 

  • 32.

    Mullin, K. D. et al. Density, abundance, survival, and ranging patterns of common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound following the Deepwater Horizon oil spill. PLoS ONE 12, e0186265 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Di Giacomo, A. B. & Ott, P. H. Long-term site fidelity and residency patterns of bottlenose dolphins (Tursiops truncatus) in the Tramandaí Estuary, southern Brazil. Latin Am. J. Aquat. Mamm. 11, 155–161 (2017).

    Article 

    Google Scholar 

  • 34.

    Bailey, H. & Thompson, P. Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging. J. Anim. Ecol. 75, 456–465 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Torres, L. G. & Read, A. J. Where to catch a fish? The influence of foraging tactics on the ecology of bottlenose dolphins (Tursiops truncatus) in Florida Bay, Florida. Mar. Mamm. Sci. 25, 797–815 (2009).

    Article 

    Google Scholar 

  • 36.

    Berens McCabe, E. J., Gannon, D. P., Barros, N. B. & Wells, R. S. Prey selection by resident common bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. Mar. Biol. 157, 931–942 (2010).

    Article 

    Google Scholar 

  • 37.

    Jaureguizar, A. J., Ruarte, C. & Guerrero, R. A. Distribution of age-classes of striped weakfish (Cynoscion guatucupa) along an estuarine–marine gradient: Correlations with the environmental parameters. Estuar. Coast. Shelf Sci. 67, 82–92 (2006).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Antonio, E. S. et al. Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient. Estuar. Coast. Shelf Sci. 112, 86–97 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Cloyed, C. S. & Eason, P. K. Different ecological conditions support individual specialization in closely related, ecologically similar species. Evol. Ecol. 30, 379–400 (2016).

    Article 

    Google Scholar 

  • 40.

    Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & Dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Wissel, B., Gaçe, A. & Fry, B. Tracing river influences on phytoplankton dynamics in two Louisiana estuaries. Ecology 86, 2751–2762 (2005).

    Article 

    Google Scholar 

  • 42.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • 43.

    Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).

    Article 

    Google Scholar 

  • 44.

    Barratclough, A. et al. Health assessments of common bottlenose dolphins (Tursiops truncatus): Past, present, and potential conservation applications. Front. Vet. Sci. 6, 444 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Wells, R. S. et al. Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 1, 246–254 (2004).

    Article 

    Google Scholar 

  • 46.

    Hohn, A. et al. Assigning stranded bottlenose dolphins to source stocks using stable isotope ratios following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 235–252 (2017).

    Article 

    Google Scholar 

  • 47.

    Sinclair, C. et al. Remote biopsy field sampling procedures for cetaceans used during the Natural Resource Damage Assessment of the MSC252 Deepwater Horizon Oil Spill. (2015).

  • 48.

    Hansen, L. J. et al. Geographic variation in polychorinated biphenyl and organochlorine pesticide concentrations in the blubber of bottlenose dolphins from the US Atlantic coast. Sci. Total Environ. 319, 147–172 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Giménez, J., Ramírez, F., Almunia, J., Forero, M. G. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Biol. Ecol. 475, 54–61 (2016).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Thomas, S. M. & Crowther, T. W. Predicting rates of isotopic turnover across the animal kingdom: A synthesis of existing data. J. Anim. Ecol. 84, 861–870 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Cloyed, C. et al. Interaction of dietary and habitat niche breadth influences cetacean vulnerability to environmental disturbance. Ecosphere 12, e03759 (2021).

    Article 

    Google Scholar 

  • 53.

    Sweeting, C., Polunin, N. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Cloyed, C. S., DaCosta, K. P., Hodanbosi, M. R. & Carmichael, R. H. The effects of lipid extraction on δ13C and δ15N values and use of lipid-correction models across tissues, taxa and trophic groups. Methods Ecol. Evol. 11, 751–762 (2020).

    Article 

    Google Scholar 

  • 55.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).

    Article 

    Google Scholar 

  • 57.

    Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).

    Article 

    Google Scholar 

  • 58.

    Team, R. C. R: A language and environment for statistical computing. (2013).

  • 59.

    Lusseau, D. et al. Quantifying the influence of sociality on population structure in bottlenose dolphins. J. Anim. Ecol. 75, 14–24 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Ingram, S. N. & Rogan, E. Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Mar. Ecol. Prog. Ser. 244, 247–255 (2002).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Balmer, B. et al. Extended movements of common bottlenose dolphins (Tursiops truncatus) along the northern Gulf of Mexico’s central coast. Gulf Mexico Sci. 33, 8 (2016).

    Article 

    Google Scholar 

  • 62.

    Bearzi, G., Bonizzoni, S. & Gonzalvo, J. Mid-distance movements of common bottlenose dolphins in the coastal waters of Greece. J. Ethol. 29, 369–374 (2011).

    Article 

    Google Scholar 

  • 63.

    Balmer, B. et al. Ranging patterns, spatial overlap, and association with dolphin morbillivirus exposure in common bottlenose dolphins (Tursiops truncatus) along the Georgia, USA coast. Ecol. Evol. 8, 12890–12904. https://doi.org/10.1002/ece3.4727 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Rossi-Santos, M. R., Wedekin, L. L. & Monteiro-Filho, E. L. Residence and site fidelity of Sotalia guianensis in the Caravelas River Estuary, eastern Brazil. J. Mar. Biol. Assoc. UK 87, 207 (2007).

    Article 

    Google Scholar 

  • 65.

    Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: Important metrics for management. Oryx 48, 370–377 (2014).

    Article 

    Google Scholar 

  • 66.

    Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J. & Sims, D. W. Foraging success of biological Lévy flights recorded in situ. Proc. Natl. Acad. Sci. USA. 109, 7169–7174 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).

    Article 

    Google Scholar 

  • 69.

    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MaCleod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).

    Article 

    Google Scholar 

  • 70.

    de la Morinière, E. C. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: Stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).

    ADS 
    Article 

    Google Scholar 

  • 71.

    Ward-Paige, C. A., Britten, G. L., Bethea, D. M. & Carlson, J. K. Characterizing and predicting essential habitat features for juvenile coastal sharks. Mar. Ecol. 36, 419–431 (2015).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Rogers, K. M. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar. Pollut. Bull. 46, 821–827 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Lee, S. Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. II: Trophic relationship based on carbon-and nitrogen-stable isotopes. Mar. Ecol. Progress Ser. 205, 1–10 (2000).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Grady, J. R. Properties of sea grass and sand flat sediments from the intertidal zone of St. Andrew Bay, Florida. Estuaries 4, 335 (1981).

    Article 

    Google Scholar 

  • 75.

    Poulakis, G. R., Blewett, D. A. & Mitchell, M. E. The effects of season and proximity to fringing mangroves on seagrass-associated fish communities in Charlotte Harbor, Florida. Gulf Mexico Sci. 21, 3 (2003).

    Article 

    Google Scholar 

  • 76.

    Borrell, A., Vighi, M., Genov, T., Giovos, I. & Gonzalvo, J. Feeding ecology of the highly threatened common bottlenose dolphin of the Gulf of Ambracia, Greece, through stable isotope analysis. Mar. Mamm. Sci. 37, 98–110 (2021).

    Article 

    Google Scholar 

  • 77.

    Gibbs, S. E., Harcourt, R. G. & Kemper, C. M. Niche differentiation of bottlenose dolphin species in South Australia revealed by stable isotopes and stomach contents. Wildl. Res. 38, 261–270 (2011).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Lenes, J. M. & Heil, C. A. A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico. J. Plankton Res. 32, 1421–1431 (2010).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Barros, N. B. & Odell, D. K. In The Bottlenose Dolphin (eds Leatherwood, S. & Reeves, R. R.) Ch. 16, 309–328 (Academic Press, 1990).

  • 81.

    Lane, S. M. et al. Reproductive outcome and survival of common bottlenose dolphins sampled in Barataria Bay, Louisiana, USA, following the Deepwater Horizon oil spill. Proc. R. Soc. B Biol. Sci. 282, 20151944 (2015).

    Article 
    CAS 

    Google Scholar 

  • 82.

    Smith, C. R. et al. Slow recovery of Barataria Bay dolphin health following the Deepwater Horizon oil spill (2013–2014), with evidence of persistent lung disease and impaired stress response. Endanger. Species Res. 33, 127–142 (2017).

    Article 

    Google Scholar 

  • 83.

    McDonald, T. L. et al. Survival, density, and abundance of common bottlenose dolphins in Barataria Bay (USA) following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 193–209 (2017).

    ADS 
    Article 

    Google Scholar 

  • 84.

    Trustees, D. N. Deepwater Horizon oil spill: final programmatic damage assessment and restoration plant (PDARP) and final programmatic environmental impact statement (PEIS). (2016).

  • 85.

    Carmichael, R. H., Graham, W. M., Aven, A., Worthy, G. & Howden, S. Were multiple stressors a ‘perfect storm’ for northern Gulf of Mexico bottlenose dolphins (Tursiops truncatus) in 2011?. PLoS ONE 7, e41155 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Booth, C. & Thomas, L. In Oceans. 179–192 (Multidisciplinary Digital Publishing Institute).

  • 87.

    Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 88.

    Rossman, S. et al. Retrospective analysis of bottlenose dolphin foraging: A legacy of anthropogenic ecosystem disturbance. Mar. Mamm. Sci. 29, 705–718 (2013).

    CAS 

    Google Scholar 

  • 89.

    Schwacke, L. H. et al. Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex-and class-structured population model. Endanger. Species Res. 33, 265–279 (2017).

    Article 

    Google Scholar 

  • 90.

    McCann, K. S., Rasmussen, J. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Schwacke, L. H. et al. Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the deepwater horizon oil spill. Environ. Sci. Technol. 48, 93–103 (2013).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 92.

    Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuar. Coasts 38, 401–414 (2015).

    Article 

    Google Scholar 

  • 93.

    Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).

    Article 

    Google Scholar 

  • 94.

    Kenworthy, M. D. et al. Movement ecology of a mobile predatory fish reveals limited habitat linkages within a temperate estuarine seascape. Can. J. Fish. Aquat. Sci. 75, 1990–1998 (2018).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Fitzgerald, D. M., Kulp, M., Penland, S., Flocks, J. & Kindinger, J. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River Delta. Sedimentology 51, 1157–1178 (2004).

    ADS 
    Article 

    Google Scholar 

  • 96.

    Habib, E. et al. Assessing effects of data limitations on salinity forecasting in Barataria basin, Louisiana, with a Bayesian analysis. J. Coast. Res. 2007, 749–763 (2007).

    Article 

    Google Scholar 

  • 97.

    Eleuterius, C. K. Geographical definition of Mississippi Sound. Gulf Caribb. Res. 6, 179–181 (1978).

    Google Scholar 

  • 98.

    Lucas, K. L. & Carter, G. A. Decadal changes in habitat-type coverage on Horn Island, Mississippi, USA. J. Coast. Res. 26, 1142–1148 (2010).

    Article 

    Google Scholar 

  • 99.

    Ichiye, T. & Jones, M. L. On the hydrography of the St. Andrew Bay system, Florida 1. Limnol. Oceanogr. 6, 302–311 (1961).

    ADS 
    Article 

    Google Scholar 

  • 100.

    Morgan, S. G. Plasticity in reproductive timing by crabs in adjacent tidal regimes. Mar. Ecol. Prog. Ser. 139, 105–118 (1996).

    ADS 
    Article 

    Google Scholar 

  • 101.

    Livingston, R. et al. Modelling oyster population response to variation in freshwater input. Estuar. Coast. Shelf Sci. 50, 655–672 (2000).

    ADS 
    Article 

    Google Scholar 

  • 102.

    Twichell, D. et al. Geologic controls on the recent evolution of oyster reefs in Apalachicola Bay and St. George Sound, Florida. Estuar. Coast. Shelf Sci. 88, 385–394 (2010).

    ADS 
    Article 

    Google Scholar 

  • 103.

    Chen, Z., Hu, C., Conmy, R. N., Muller-Karger, F. & Swarzenski, P. Colored dissolved organic matter in Tampa Bay, Florida. Mar. Chem. 104, 98–109 (2007).

    CAS 
    Article 

    Google Scholar 

  • 104.

    Julian, P. & Estevez, E. D. In Proceedings of the Tampa Bay Area Scientific Information Symposium, BASIS 5: Using Our Knowledge to Shape Our Future. 27–33.

  • 105.

    Adams, A. J. & Blewett, D. A. Spatial patterns of estuarine habitat type use and temporal patterns in abundance of juvenile permit, Trachinotus falcatus, in Charlotte Harbor, Florida. Gulf Caribb. Res. 16, 129–139 (2004).

    Article 

    Google Scholar 

  • 106.

    Kahle, D., Wickham, H. & Kahle, M. D. Package ‘ggmap’. (2019).


  • Source: Ecology - nature.com

    For campus “porosity hunters,” climate resilience is the goal

    New “risk triage” platform pinpoints compounding threats to US infrastructure