in

Replicated, urban-driven exposure to metallic trace elements in two passerines

  • 1.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).

    Article 

    Google Scholar 

  • 4.

    Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18 (2009).

    Article 

    Google Scholar 

  • 5.

    Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Article 

    Google Scholar 

  • 8.

    Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Article 

    Google Scholar 

  • 10.

    Salmón, P., Watson, H., Nord, A. & Isaksson, C. Effects of the urban environment on oxidative stress in early life: Insights from a cross-fostering experiment. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy099 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Chatelain, M., Drobniak, S. M. & Szulkin, M. The association between stressors and telomeres in non-human vertebrates: A meta-analysis. Ecol. Lett. 23, 381–398 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).

    Article 

    Google Scholar 

  • 13.

    Isaksson, C. Impact of urbanization on birds. In Bird Species (ed. Tietze, D. T.) 235–257 (Springer, 2018).

    Chapter 

    Google Scholar 

  • 14.

    Ouyang, J. Q. et al. A new framework for urban ecology: An integration of proximate and ultimate responses to anthropogenic change. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy110 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) 36–53 (Oxford University Press, 2020).

    Chapter 

    Google Scholar 

  • 18.

    Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. How to quantify urbanisation when testing for urban evolution? In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).

    Chapter 

    Google Scholar 

  • 20.

    McDonnell, M. J. & Pickett, S. T. A. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).

    Article 

    Google Scholar 

  • 21.

    Bai, X. et al. Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017).

    Article 

    Google Scholar 

  • 22.

    Boyd, R. S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 36, 46–58 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Dauwe, T., Janssens, E., Pinxten, R. & Eens, M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient. Environ. Pollut. 136, 243–251 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Eeva, T., Ahola, M. & Lehikoinen, E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 157, 3126–3131 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Stauffer, J., Panda, B., Eeva, T., Rainio, M. & Ilmonen, P. Telomere damage and redox status alterations in free-living passerines exposed to metals. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.131 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Fritsch, C., Jankowiak, Ł & Wysocki, D. Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci. Rep. 9, 486 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279, 409–411 (1979).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Duan, J. & Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 74, 93–101 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Celik, E., Durmus, A., Adizel, O. & Nergiz Uyar, H. A bibliometric analysis: What do we know about metals(loids) accumulation in wild birds? Environ. Sci. Pollut. Res. 28, 10302–10334 (2021).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Bichet, C. et al. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 8, e53866 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Gragnaniello, S. et al. Sparrows as possible heavy-metal biomonitors of polluted environments. Bull. Environ. Contam. Toxicol. 66, 719–726 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Hofer, C., Gallagher, F. J. & Holzapfel, C. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site. Environ. Pollut. 158, 1207–1213 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Nam, D.-H. & Lee, D.-P. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci. Total Environ. 357, 288–295 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Roux, K. E. & Marra, P. P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 53, 261–268 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Scheifler, R. et al. Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci. Total Environ. 371, 197–205 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Manjula, M., Mohanraj, R. & Devi, M. P. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ. Monit. Assess. 187, 267 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Zarrintab, M. & Mirzaei, R. Tissue distribution and oral exposure risk assessment of heavy metals in an urban bird: Magpie from Central Iran. Environ. Sci. Pollut. Res. 25, 17118–17127 (2018).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Binkowski, ŁJ. & Meissner, W. Levels of metals in blood samples from Mallards (Anas platyrhynchos) from urban areas in Poland. Environ. Pollut. 178, 336–342 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Orłowski, G. et al. Residues of chromium, nickel, cadmium and lead in rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci. Total Environ. 490, 1057–1064 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Kekkonen, J., Hanski, I. K., Väisänen, R. A. & Brommer, J. E. Levels of heavy metals in house sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fennica 89, 91 (2012).

    Google Scholar 

  • 41.

    Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I. & Eens, M. Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends Anal. Chem. https://doi.org/10.1016/j.trac.2019.05.019 (2019).

    Article 

    Google Scholar 

  • 42.

    Dijkstra, L. & Poelman, H. Cities in Europe: The new OECD-EC definition. Reg. Focus 16, 1–3 (2012).

    Google Scholar 

  • 43.

    Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).

    Google Scholar 

  • 44.

    Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 1994).

    Google Scholar 

  • 45.

    Greenwood, P. J., Harvey, P. H. & Perrins, C. M. The role of dispersal in the great tit (Parus major): The causes, consequences and heritability of natal dispersal. J. Anim. Ecol. 48, 123 (1979).

    Article 

    Google Scholar 

  • 46.

    Harvey, P. H., Greenwood, P. J. & Perrins, C. M. Breeding area fidelity of great tits (Parus major). J. Anim. Ecol. 48, 305 (1979).

    Article 

    Google Scholar 

  • 47.

    Ortego, J., García-Navas, V., Ferrer, E. S. & Sanz, J. J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim. Behav. 82, 131–137 (2011).

    Article 

    Google Scholar 

  • 48.

    Tufto, J., Ringsby, T., Dhondt, A. A., Adriaensen, F. & Matthysen, E. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14, 3–11 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Moll, R. J. et al. What does urbanization actually mean? A framework for urban metrics in wildlife research. J. Appl. Ecol. 56, 1289–1300 (2019).

    Article 

    Google Scholar 

  • 51.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).

  • 52.

    Lee, L. & Helsel, D. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput. Geosci. 31, 1241–1248 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Salgado, C. M., Azevedo, C., Proença, H., Vieira, S. M. Noise versus outliers. In Secondary Analysis of Electronic Health Records, 163–183 (ed MIT Critical Data) (Springer, 2016).

    Chapter 

    Google Scholar 

  • 54.

    Betts, M. M. The food of titmice in Oak Woodland. J. Anim. Ecol. 24, 282 (1955).

    Article 

    Google Scholar 

  • 55.

    Newton, I. & Brockie, K. The Migration Ecology of Birds (Elsevier/Acad. Press, 2008).

    Google Scholar 

  • 56.

    Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).

    Article 

    Google Scholar 

  • 57.

    Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics Vol. 81 (D. Reidel, 1986).

    MATH 

    Google Scholar 

  • 58.

    Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).

    Article 

    Google Scholar 

  • 59.

    Grömping, U. Relative importance for linear regression in R : The package relaimpo. J. Stat. Softw. https://doi.org/10.18637/jss.v017.i01 (2006).

    Article 

    Google Scholar 

  • 60.

    Pacyna, E. G. et al. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci. Total Environ. 370, 147–156 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Frantz, A. et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 168, 23–28 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Eens, M., Pinxten, R., Verheyen, R. F., Blust, R. & Bervoets, L. Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol. Environ. Saf. 44, 81–85 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Indic. 1, 227–234 (2002).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ. Toxicol. Chem. 20, 2815–2820 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Burger, J. Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Contam. Toxicol. 5, 203–311 (1993).

    Google Scholar 

  • 66.

    Chatelain, M., Gasparini, J., Jacquin, L. & Frantz, A. The adaptive function of melanin-based plumage coloration to trace metals. Biol. Lett. 10, 20140164–20140164 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Bańbura, M. et al. Egg size variation in blue tits Cyanistes caeruleus and great tits Parus major in relation to habitat differences in snail abundance. Acta Ornithol. 45, 121–129 (2010).

    Article 

    Google Scholar 

  • 68.

    Scheuhammer, A. M. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ. Pollut. 94, 337–343 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Dauwe, T., Snoeijs, T., Bervoets, L., Blust, R. & Eens, M. Calcium availability influences lead accumulation in a passerine bird. Anim. Biol. 56, 289–298 (2006).

    Article 

    Google Scholar 

  • 70.

    Snoeijs, T. et al. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch. Environ. Pollut. 134, 123–132 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    McCabe, E. B. Age and sensitivity to lead toxicity: A review. Environ. Health Perspect. 29, 29–33 (1979).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Chatelain, M., Gasparini, J. & Frantz, A. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob. Change Biol. 22, 2380 (2016).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Chatelain, M., Gasparini, J. & Frantz, A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology. https://doi.org/10.1007/s10646-016-1610-5 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 74.

    Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. https://doi.org/10.1111/jav.00857 (2015).

    Article 

    Google Scholar 

  • 75.

    Chatelain, M., Pessato, A., Frantz, A., Gasparini, J. & Leclaire, S. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos. https://doi.org/10.1111/oik.04262 (2017).

    Article 

    Google Scholar 

  • 76.

    Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. https://doi.org/10.1101/038141 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Koivula, M. J. & Eeva, T. Metal-related oxidative stress in birds. Environ. Pollut. 158, 2359–2370 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Korashy, H. M. et al. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 221, 64–74 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article 

    Google Scholar 

  • 81.

    Garcia, C. M., Suárez-Rodríguez, M. & López-Rull, I. Becoming citizens: Avian adaptations to urban life. In Ecology and Conservation of Birds in Urban Environments (eds Murgui, E. & Hedblom, M.) 91–112 (Springer, 2017).

    Chapter 

    Google Scholar 

  • 82.

    Goiran, C., Bustamante, P. & Shine, R. Industrial Melanism in the Seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Obukhova, N. Polymorphism and phene geography of the blue rock pigeon in Europe. Russ. J. Genet. 43, 492–501 (2007).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Gomes, W. R. et al. Polymorphisms of genes related to metabolism of lead (Pb) are associated with the metal body burden and with biomarkers of oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836, 42–46 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Sekovanić, A., Jurasović, J. & Piasek, M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arch. Ind. Hyg. Toxicol. 71, 27–47 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    For campus “porosity hunters,” climate resilience is the goal

    New “risk triage” platform pinpoints compounding threats to US infrastructure