Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).
Google Scholar
Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).
Google Scholar
Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).
Google Scholar
Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18 (2009).
Google Scholar
Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).
Google Scholar
Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).
Google Scholar
McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).
Google Scholar
Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).
Google Scholar
McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
Google Scholar
Salmón, P., Watson, H., Nord, A. & Isaksson, C. Effects of the urban environment on oxidative stress in early life: Insights from a cross-fostering experiment. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy099 (2018).
Google Scholar
Chatelain, M., Drobniak, S. M. & Szulkin, M. The association between stressors and telomeres in non-human vertebrates: A meta-analysis. Ecol. Lett. 23, 381–398 (2020).
Google Scholar
Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).
Google Scholar
Isaksson, C. Impact of urbanization on birds. In Bird Species (ed. Tietze, D. T.) 235–257 (Springer, 2018).
Google Scholar
Ouyang, J. Q. et al. A new framework for urban ecology: An integration of proximate and ultimate responses to anthropogenic change. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy110 (2018).
Google Scholar
Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).
Google Scholar
Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).
Google Scholar
Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) 36–53 (Oxford University Press, 2020).
Google Scholar
Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).
Google Scholar
Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. How to quantify urbanisation when testing for urban evolution? In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).
Google Scholar
McDonnell, M. J. & Pickett, S. T. A. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).
Google Scholar
Bai, X. et al. Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017).
Google Scholar
Boyd, R. S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 36, 46–58 (2010).
Google Scholar
Dauwe, T., Janssens, E., Pinxten, R. & Eens, M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient. Environ. Pollut. 136, 243–251 (2005).
Google Scholar
Eeva, T., Ahola, M. & Lehikoinen, E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 157, 3126–3131 (2009).
Google Scholar
Stauffer, J., Panda, B., Eeva, T., Rainio, M. & Ilmonen, P. Telomere damage and redox status alterations in free-living passerines exposed to metals. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.131 (2016).
Google Scholar
Fritsch, C., Jankowiak, Ł & Wysocki, D. Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci. Rep. 9, 486 (2019).
Google Scholar
Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279, 409–411 (1979).
Google Scholar
Duan, J. & Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 74, 93–101 (2013).
Google Scholar
Celik, E., Durmus, A., Adizel, O. & Nergiz Uyar, H. A bibliometric analysis: What do we know about metals(loids) accumulation in wild birds? Environ. Sci. Pollut. Res. 28, 10302–10334 (2021).
Google Scholar
Bichet, C. et al. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 8, e53866 (2013).
Google Scholar
Gragnaniello, S. et al. Sparrows as possible heavy-metal biomonitors of polluted environments. Bull. Environ. Contam. Toxicol. 66, 719–726 (2001).
Google Scholar
Hofer, C., Gallagher, F. J. & Holzapfel, C. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site. Environ. Pollut. 158, 1207–1213 (2010).
Google Scholar
Nam, D.-H. & Lee, D.-P. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci. Total Environ. 357, 288–295 (2006).
Google Scholar
Roux, K. E. & Marra, P. P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 53, 261–268 (2007).
Google Scholar
Scheifler, R. et al. Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci. Total Environ. 371, 197–205 (2006).
Google Scholar
Manjula, M., Mohanraj, R. & Devi, M. P. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ. Monit. Assess. 187, 267 (2015).
Google Scholar
Zarrintab, M. & Mirzaei, R. Tissue distribution and oral exposure risk assessment of heavy metals in an urban bird: Magpie from Central Iran. Environ. Sci. Pollut. Res. 25, 17118–17127 (2018).
Google Scholar
Binkowski, ŁJ. & Meissner, W. Levels of metals in blood samples from Mallards (Anas platyrhynchos) from urban areas in Poland. Environ. Pollut. 178, 336–342 (2013).
Google Scholar
Orłowski, G. et al. Residues of chromium, nickel, cadmium and lead in rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci. Total Environ. 490, 1057–1064 (2014).
Google Scholar
Kekkonen, J., Hanski, I. K., Väisänen, R. A. & Brommer, J. E. Levels of heavy metals in house sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fennica 89, 91 (2012).
Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I. & Eens, M. Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends Anal. Chem. https://doi.org/10.1016/j.trac.2019.05.019 (2019).
Google Scholar
Dijkstra, L. & Poelman, H. Cities in Europe: The new OECD-EC definition. Reg. Focus 16, 1–3 (2012).
Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).
Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 1994).
Greenwood, P. J., Harvey, P. H. & Perrins, C. M. The role of dispersal in the great tit (Parus major): The causes, consequences and heritability of natal dispersal. J. Anim. Ecol. 48, 123 (1979).
Google Scholar
Harvey, P. H., Greenwood, P. J. & Perrins, C. M. Breeding area fidelity of great tits (Parus major). J. Anim. Ecol. 48, 305 (1979).
Google Scholar
Ortego, J., García-Navas, V., Ferrer, E. S. & Sanz, J. J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim. Behav. 82, 131–137 (2011).
Google Scholar
Tufto, J., Ringsby, T., Dhondt, A. A., Adriaensen, F. & Matthysen, E. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26 (2005).
Google Scholar
Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14, 3–11 (2021).
Google Scholar
Moll, R. J. et al. What does urbanization actually mean? A framework for urban metrics in wildlife research. J. Appl. Ecol. 56, 1289–1300 (2019).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).
Lee, L. & Helsel, D. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput. Geosci. 31, 1241–1248 (2005).
Google Scholar
Salgado, C. M., Azevedo, C., Proença, H., Vieira, S. M. Noise versus outliers. In Secondary Analysis of Electronic Health Records, 163–183 (ed MIT Critical Data) (Springer, 2016).
Google Scholar
Betts, M. M. The food of titmice in Oak Woodland. J. Anim. Ecol. 24, 282 (1955).
Google Scholar
Newton, I. & Brockie, K. The Migration Ecology of Birds (Elsevier/Acad. Press, 2008).
Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).
Google Scholar
Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics Vol. 81 (D. Reidel, 1986).
Google Scholar
Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
Google Scholar
Grömping, U. Relative importance for linear regression in R : The package relaimpo. J. Stat. Softw. https://doi.org/10.18637/jss.v017.i01 (2006).
Google Scholar
Pacyna, E. G. et al. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci. Total Environ. 370, 147–156 (2006).
Google Scholar
Frantz, A. et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 168, 23–28 (2012).
Google Scholar
Eens, M., Pinxten, R., Verheyen, R. F., Blust, R. & Bervoets, L. Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol. Environ. Saf. 44, 81–85 (1999).
Google Scholar
Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Indic. 1, 227–234 (2002).
Google Scholar
Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ. Toxicol. Chem. 20, 2815–2820 (2001).
Google Scholar
Burger, J. Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Contam. Toxicol. 5, 203–311 (1993).
Chatelain, M., Gasparini, J., Jacquin, L. & Frantz, A. The adaptive function of melanin-based plumage coloration to trace metals. Biol. Lett. 10, 20140164–20140164 (2014).
Google Scholar
Bańbura, M. et al. Egg size variation in blue tits Cyanistes caeruleus and great tits Parus major in relation to habitat differences in snail abundance. Acta Ornithol. 45, 121–129 (2010).
Google Scholar
Scheuhammer, A. M. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ. Pollut. 94, 337–343 (1996).
Google Scholar
Dauwe, T., Snoeijs, T., Bervoets, L., Blust, R. & Eens, M. Calcium availability influences lead accumulation in a passerine bird. Anim. Biol. 56, 289–298 (2006).
Google Scholar
Snoeijs, T. et al. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch. Environ. Pollut. 134, 123–132 (2005).
Google Scholar
McCabe, E. B. Age and sensitivity to lead toxicity: A review. Environ. Health Perspect. 29, 29–33 (1979).
Google Scholar
Chatelain, M., Gasparini, J. & Frantz, A. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob. Change Biol. 22, 2380 (2016).
Google Scholar
Chatelain, M., Gasparini, J. & Frantz, A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology. https://doi.org/10.1007/s10646-016-1610-5 (2016).
Google Scholar
Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. https://doi.org/10.1111/jav.00857 (2015).
Google Scholar
Chatelain, M., Pessato, A., Frantz, A., Gasparini, J. & Leclaire, S. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos. https://doi.org/10.1111/oik.04262 (2017).
Google Scholar
Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).
Google Scholar
Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. https://doi.org/10.1101/038141 (2017).
Google Scholar
Koivula, M. J. & Eeva, T. Metal-related oxidative stress in birds. Environ. Pollut. 158, 2359–2370 (2010).
Google Scholar
Korashy, H. M. et al. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 221, 64–74 (2017).
Google Scholar
Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
Google Scholar
Garcia, C. M., Suárez-Rodríguez, M. & López-Rull, I. Becoming citizens: Avian adaptations to urban life. In Ecology and Conservation of Birds in Urban Environments (eds Murgui, E. & Hedblom, M.) 91–112 (Springer, 2017).
Google Scholar
Goiran, C., Bustamante, P. & Shine, R. Industrial Melanism in the Seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).
Google Scholar
Obukhova, N. Polymorphism and phene geography of the blue rock pigeon in Europe. Russ. J. Genet. 43, 492–501 (2007).
Google Scholar
Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).
Google Scholar
Gomes, W. R. et al. Polymorphisms of genes related to metabolism of lead (Pb) are associated with the metal body burden and with biomarkers of oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836, 42–46 (2018).
Google Scholar
Sekovanić, A., Jurasović, J. & Piasek, M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arch. Ind. Hyg. Toxicol. 71, 27–47 (2020).
Source: Ecology - nature.com