in

Constraining the chronology and ecology of Late Acheulean and Middle Palaeolithic occupations at the margins of the monsoon

  • 1.

    Beyene, Y. et al. The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proc. Natl. Acad. Sci. USA 110, 1584–1591 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Haslam, M. et al. Late Acheulean hominins at the marine isotope stage 6/5e transition in north-central India. Quat. Res. 75, 670–682 (2011).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Carotenuto, F. et al. Venturing out safely: The biogeography of Homo erectus dispersal out of Africa. J. Hum. Evol. 95, 1–12 (2016).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).

    Article 

    Google Scholar 

  • 5.

    Bae, C. J., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science (80-) 358, 65 (2017).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Rogers, A. R., Harris, N. S. & Achenbach, A. A. Neanderthal-Denisovan ancestors interbred with a distantly related hominin. Sci. Adv. 6, 1–8 (2020).

    Google Scholar 

  • 7.

    Ruff, C. B., Trinkaus, E. & Holliday, T. W. Body mass and encephalization in Pleistocene Homo. Nature 387, 173–176 (1997).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 8.

    Rightmire, G. P. Brain size and encephalization in early to Mid-Pleistocene Homo. Am. J. Phys. Anthropol. 124, 109–123 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Rightmire, G. P. Later Middle Pleistocene Homo. in Handbook of Palaeoanthropology (eds. Henke, W. & Tattersall, I.) 2221–2242 (Springer, 2015).

  • 10.

    Lahr, M. M. The complex landscape of recent human evolution. Science (80-) 372, 995 (2021).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Athreya, S. & Hopkins, A. Conceptual issues in hominin taxonomy: Homo heidelbergensis and an ethnobiological reframing of species. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24330 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Grun, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Hershkovitz, I. et al. The earliest modern humans outside Africa. Science (80-) 359, 456–459 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 15.

    Kolobova, K. A. et al. Archaeological evidence for two separate dispersals of Neanderthals into southern Siberia. Proc. Natl. Acad. Sci. U. S. A. 117, 2879–2885 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 17.

    Douka, K. et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature 565, 640–644 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 18.

    Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Brown, P. et al. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 1055–1061 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 20.

    Détroit, F. et al. A new species of Homo from the Late Pleistocene of the Philippines. Nature 568, 181–186 (2019).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 21.

    Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Athreya, S. Modern human emergence in South Asia: A review of the fossil and genetic evidence. in Emergence and Diversity of Modern Human Behaviour in Paleolithic Asia (eds. Kaifu, Y., Izuho, M., Goebel, T., Sato, H. & Ono, A.). 61–79. (Texas A&M University Press, 2015).

  • 23.

    Patnaik, R. et al. New geochronological, paleoclimatological, and archaeological data from the Narmada Valley hominin locality, central India. J. Hum. Evol. 56, 114–133 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 24.

    Pappu, S. et al. Early Pleistocene presence of Acheulian hominins in South India. Science 331, 1596–1599 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 25.

    Paddayya, K. et al. Recent findings on the Achuelian of the Hunsgi and Baichbal valleys, Karnataka, with special reference to the Isampur excavation and its dating. Curr. Sci. 83, 641–647 (2002).

    Google Scholar 

  • 26.

    Blinkhorn, J. & Petraglia, M. D. Environments and cultural change in the Indian subcontinent: Implications for the dispersal of Homo sapiens in the Late Pleistocene. Curr. Anthropol. 58, S463–S479 (2017).

    Article 

    Google Scholar 

  • 27.

    Benito-calvo, A., Barfod, D. N., Mchenry, L. J. & De, I. The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia). J. Hum. Evolut. 2014, 26–38 (2014).

    Article 

    Google Scholar 

  • 28.

    De la Torre, I., Mora, R., Arroyo, A. & Benito-calvo, A. Acheulean technological behaviour in the Middle Pleistocene landscape of Mieso (East-Central Ethiopia ). J. Hum. Evol. 76, 1–25 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Shipton, C. et al. Acheulean technology and landscape use at Dawadmi, central Arabia. PLoS ONE 13, e200497 (2018).

    Google Scholar 

  • 30.

    Scerri, E. M. L. et al. The expansion of later Acheulean hominins into the Arabian Peninsula. Sci. Rep. 8, 1–9 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Brooks, A. S. et al. Long-distance stone transport and pigment use in the earliest Middle Stone Age. Science (80-) 360, 90–94 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 32.

    Valladas, H. et al. Dating the Lower to Middle Paleolithic transition in the Levant: A view from Misliya Cave, Mount Carmel, Israel. J. Hum. Evol. 65, 585–593 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Carmignani, L., Moncel, M. H. E., Fernandes, P. & Wilson, L. Technological variability during the Early Middle Palaeolithic in Western Europe: Reduction systems and predetermined products at the Bau de l’Aubesier and Payre (South-East France). PLoS ONE 12, e178550 (2017).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Blinkhorn, J. et al. The first directly dated evidence for Palaeolithic occupation on the Indian coast at Sandhav, Kachchh. Quat. Sci. Rev. 224, 105975 (2019).

    Article 

    Google Scholar 

  • 35.

    Blinkhorn, J., Achyuthan, H., Petraglia, M. & Ditchfield, P. Middle Palaeolithic occupation in the Thar Desert during the Upper Pleistocene: the signature of a modern human exit out of Africa?. Quat. Sci. Rev. 77, 233–238 (2013).

    Article 
    ADS 

    Google Scholar 

  • 36.

    Petraglia, M. et al. Middle Paleolithic assemblages from the Indian subcontinent before and after the Toba super-eruption. Science 317, 114–116 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 37.

    Petraglia, M. D., Ditchfield, P., Jones, S., Korisettar, R. & Pal, J. N. The Toba volcanic super-eruption, environmental change, and hominin occupation history in India over the last 140,000 years. Quat. Int. 258, 119–134 (2012).

    Article 

    Google Scholar 

  • 38.

    Clarkson, C. et al. Human occupation of northern India spans the Toba super-eruption ~74,000 years ago. Nat. Commun. 11, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Akhilesh, K. et al. Early Middle Palaeolithic culture in India around 385–172 ka reframes out of Africa models. Nature 554, 97–101 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 40.

    Dennell, R. The Palaeolithic Settlement of Asia. (Cambridge University Press, 2009).

  • 41.

    Chauhan, P. R. Human evolution in the center of the old world: An updated review of the South Asian Paleolithic. in Pleistocene Archaeology—Migration, Technology, and Adaptation (eds. Ono, R. & Pawlik, A.). 94625. (IntechOpen, 2020).

  • 42.

    Roberts, P., Blinkhorn, J. & Petraglia, M. D. A transect of environmental variability across South Asia and its influence on Late Pleistocene human innovation and occupation. J. Quat. Sci. 33, 285–299 (2018).

    Article 

    Google Scholar 

  • 43.

    Goudie, A., Allchin, B. & Hegde, K. The former extensions of the Great Indian Sand desert. Geogr. J. 139, 243–257 (1973).

    Article 

    Google Scholar 

  • 44.

    Blinkhorn, J. The gateway to the oriental zone: Environmental change and palaeolithic behaviour in the Thar Desert. Quat. Int. 596, 79–92 (2021).

    Article 

    Google Scholar 

  • 45.

    Gaillard, C., Misra, V. N., Rajaguru, S. N., Raju, D. R. & Raghavan, H. Acheulian occupation at Singi Talav in the Thar Desert: A preliminary report on 1981 excavation. Bull. Deccan Coll. Res. Inst. 44, 141–152 (1985).

    Google Scholar 

  • 46.

    Raghavan, H., Gaillard, C. & Rajaguru, S. N. Genesis of Calcretes from the Calc-pan site of Singi Talav near a micromorphological approach. Geoarchaeology 6, 151–168 (1991).

    Article 

    Google Scholar 

  • 47.

    Misra, V. N. & Rajaguru, S. N. Palaeoenvironments and prehistory of the Thar Desert, Rajasthan, India. in South Asian Archaeology 1985. 296–320. (Scandinavian Institute of Asian Studies Occasional Papers, 1989).

  • 48.

    Misra, V. Geoarchaeology of the Thar desert, northwest India. Mem. Soc. India 210–230 (1995).

  • 49.

    Gaillard, C. Contribution à la Connaissance du Paléolithique Inférieur-Moyen en Inde. (Université de Provence, 1993).

  • 50.

    Gaillard, C., Mishra, S., Singh, M., Deo, S. & Abbas, R. Lower and Early Middle Pleistocene Acheulian in the Indian sub-continent. Quat. Int. 223–224, 234–241 (2010).

    Article 

    Google Scholar 

  • 51.

    Gaillard, C., Mishra, S., Singh, M., Deo, S. & Abbas, R. Reply to: “Comment on ‘lower and early Middle Pleistocene Acheulian in the Indian sub-continent’” by P. Chauhan. Quat. Int. 223–224, 260–264 (2010).

    Article 

    Google Scholar 

  • 52.

    Kailath, A. J. et al. Electron spin resonance characterization of calcretes from Thar desert for dating applications. Radiat. Meas. 32, 371–383 (2000).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Chauhan, P. R. Comment on ‘Lower and Early Middle Pleistocene Acheulian in the Indian sub-continent’ by Gaillard et al. (2009) (Quaternary International). Quat. Int. 223224, 248–259 (2010).

  • 54.

    Alexandre, A., Meunier, J. D., Lézine, A. M., Vincens, A. & Schwartz, D. Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136, 213–229 (1997).

    Article 

    Google Scholar 

  • 55.

    Diester-Haass, L., Schrader, H. J. & Thiede, J. Sedimentological and paleoclimatological investigations of two pelagic ooze cores off Cape Barbas, North-West Africa. Meteorol. Forshungergebnisse 16, 19–66 (1973).

    Google Scholar 

  • 56.

    Twiss, P. C. Predicted world distribution of C3 and C4 grass phytoliths. in Phytolith Systematics: Emerging Issues (eds. Rapp, G. R. & Mullholland, S. C.). 113–128. (Springer, 1992).

  • 57.

    Breecker, D. O., Sharp, Z. D. & McFadden, L. D. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Bull. Geol. Soc. Am. 121, 630–640 (2009).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Szabo, B. J., McKinney, C., Dalbey, T. S. & Paddayya, K. On the age of the Acheulian culture of the Hunsgi-Baichbal Valleys, Peninsular India. Bull. Deccan Coll. Postgrad. Res. Inst. 50, 317–321 (1990).

    Google Scholar 

  • 59.

    Atkinson, T. J., Brown, P. J., Powar, N. J. & Kale, V. S. The Acheulian horizon at Chirki-Nevasa and its chronological implications. Bull. Deccan Coll. Postgrad. Res. Inst. 36, 3–14 (1990).

    Google Scholar 

  • 60.

    Deo, S. G., Joglekar, J. J. & Rajaguru, S. N. Geomorphic context of two acheulian sites in semi-arid peninsular India: Inferring palaeoenvironment and chronology. Quat. Int. 480, 166–177 (2018).

    Article 

    Google Scholar 

  • 61.

    Blinkhorn, J. A new synthesis of evidence for the Upper Pleistocene occupation of 16R Dune and its southern Asian context. Quat. Int. 300, 282–291 (2013).

    Article 

    Google Scholar 

  • 62.

    Baskaran, M., Maratheb, A. R., Rajagurub, S. N. & Somayajulu, B. L. K. Geochronology of Palaeolithic cultures in the Hiran Valley, Saurashtra, India. J. Archaeol. Sci. 13, 505–514 (1986).

    Article 

    Google Scholar 

  • 63.

    Jain, M., Tandon, S. K. & Bhatt, S. C. Late Quaternary stratigraphic development in the lower Luni, Mahi and Sabarmati river basins, western India. J. Earth Syst. Sci. 113, 453–471 (2004).

    Article 
    ADS 

    Google Scholar 

  • 64.

    Juyal, N., Chamyal, L. S., Bhandari, S., Bhushan, R. & Singhvi, A. K. Continental record of the southwest monsoon during the last 130 ka : evidence from the southern margin of the Thar Desert, India. Quat. Sci. Rev. 25, 2632–2650 (2006).

    Article 
    ADS 

    Google Scholar 

  • 65.

    Ajithprasad, P. Early Middle Palaeolithic: A transition phase between the Upper Acheulian and Middle Palaeolithic cultures in the Orsang Valley, Gujarat. Man Environ. 30, 1–11 (2005).

    Google Scholar 

  • 66.

    Bednarik, R. G., Kumar, G., Watchman, A. & Roberts, R. G. Preliminary results of the EIP Project. Rock Art Res. 22, 147–197 (2005).

    Google Scholar 

  • 67.

    Blinkhorn, J., Achyuthan, H., Ditchfield, P. & Petraglia, M. Palaeoenvironmental dynamics and Palaeolithic occupation at Katoati, Thar Desert. India. Quat. Res. (United States) 87, 298 (2017).

    CAS 

    Google Scholar 

  • 68.

    Gaillard, C. & Rajaguru, S. N. Revisiting the Acheulian site of Singi Talav at Didwana (Rajasthan) 35 years. in Rethinking the Past: A Tribute to Professor V. N. Misra (ed. Deo, S. G.). 25–39. https://doi.org/10.7765/9780719098451.00013 (Indian Society for Prehistoric and Quaternary Studies, 2017).

  • 69.

    d’Errico, F., Gaillard, C. & Misra, V. N. Collection of non-utilitarian objects by Homo erectus in India. in Hominidae: Proceedings of the 2nd International Congress of Human Paleontology (ed. Giacobini, G.). 237–239. (Jaca Book, 1989).

  • 70.

    Key, A. J. M., Jarić, I. & Roberts, D. L. Modelling the end of the Acheulean at global and continental levels suggests widespread persistence into the Middle Palaeolithic. Hum. Soc. Sci. Commun. 8, 1–12 (2021).

    Article 

    Google Scholar 

  • 71.

    Wasson, R. J., Smith, G. I. & Agrawala, D. P. Late Quaternary sediments, minerals and inferred geochemical history of Didwana Lake, Thar Dessert, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 46, 345–372 (1984).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Jakher, G. R., Bhargava, S. C. & Sinha, R. K. Comparative limnology of Sambhar and Didwana lakes (Rajasthan, NW India). Saline Lakes 67, 245–256 (1990).

    Article 

    Google Scholar 

  • 73.

    Sinha, R. et al. Late Quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 233, 252–270 (2006).

    Article 

    Google Scholar 

  • 74.

    Sinha, R. & Raymahashay, B. C. Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sediment. Geol. 166, 59–71 (2004).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 75.

    Deotare, B. C. et al. Palaeoenvironmental history of Bap-Malar and Kanod playas of western Rajasthan, Thar desert. J. Earth Syst. Sci. 113, 403–425 (2004).

    Article 
    ADS 

    Google Scholar 

  • 76.

    Roy, P. D., Sinha, R., Smykatz-Kloss, W., Singhvi, A. K. & Nagar, Y. C. Playas of the Thar Desert: Mineralogical and geochemical archives of Late Holocene climates. Asian J. Earth Sci. 1, 43–61 (2008).

    Article 
    CAS 

    Google Scholar 

  • 77.

    Achyuthan, H., Kar, A. & Eastoe, C. Late Quaternary-Holocene lake-level changes in the eastern margin of the Thar Desert, India. J. Paleolimnol. 38, 493–507 (2007).

    Article 
    ADS 

    Google Scholar 

  • 78.

    Dhir, R. P. et al. Multiple episodes of aggradation and calcrete formation in Late Quaternary aeolian sands, Central Thar Desert, Rajasthan, India. J. Asian Earth Sci. 37, 10–16 (2010).

    Article 
    ADS 

    Google Scholar 

  • 79.

    Juyal, N., Chamyal, L., Bhandari, S., Bhushan, R. & Singhvi, A. Continental record of the southwest monsoon during the last 130 ka: Evidence from the southern margin of the Thar Desert, India. Quat. Sci. Rev. 25, 2632–2650 (2006).

    Article 
    ADS 

    Google Scholar 

  • 80.

    Giosan, L. et al. Fluvial landscapes of the Harappan civilization. Proc. Natl. Acad. Sci. 109, E1688–E1694 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Achyuthan, H., Quade, J., Roe, L. & Placzek, C. Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India. Quat. Int. 162, 50–60 (2007).

    Article 

    Google Scholar 

  • 82.

    Sharma, K., Bhatt, N., Shukla, A. D., Cheong, D. K. & Singhvi, A. K. Optical dating of late Quaternary carbonate sequences of Saurashtra, western India. Quat. Res. (United States) 87, 133–150 (2017).

    CAS 

    Google Scholar 

  • 83.

    Blinkhorn, J., Achyuthan, H., Jaiswal, M. & Singh, A. K. The first dated evidence for Middle-Late Pleistocene fluvial activity in the central Thar Desert. Quat. Sci. Rev. 250, 106656 (2020).

    Article 

    Google Scholar 

  • 84.

    Singhvi, A. K. et al. A ~200 ka record of climatic change and dune activity in the Thar Desert, India. Quat. Sci. Rev. 29, 3095–3105 (2010).

    Article 
    ADS 

    Google Scholar 

  • 85.

    Blinkhorn, J., Achyuthan, H., Ditchfield, P. & Petraglia, M. Palaeoenvironmental dynamics and Palaeolithic occupation at Katoati, Thar Desert, India. Quat. Res. 87, 298–313 (2017).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Shipton, C. Hierarchical organization in the Acheulean to Middle Palaeolithic transition at Bhimbetka, India. Camb. Archaeol. J. 26, 601–618 (2016).

    Article 

    Google Scholar 

  • 87.

    Shipton, C. et al. Generativity, hierarchical action and recursion in the technology of the Acheulean to Middle Palaeolithic transition: A perspective from Patpara, the Son Valley, India. J. Hum. Evol. 65, 93–108 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 88.

    Potts, R. et al. Environmental dynamics during the onset of the Middle Stone Age in eastern Africa. Science (80-) 360, 86–90 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 89.

    Tryon, C. A. & Mcbrearty, S. Tephrostratigraphy of the bedded tuff member (Kapthurin Formation, Kenya) and the nature of archaeological change in the later middle Pleistocene. Quatern. Res. 65, 492–507 (2006).

    Article 
    ADS 

    Google Scholar 

  • 90.

    Tryon, C. A., McBrearty, S. & Texier, P.-J. Levallois lithic technology from the Kapthurin Formation, Kenya: Acheulian origin and Middle Stone Age diversity. African Archaeol. Rev. 22, 199–229 (2006).

    Article 

    Google Scholar 

  • 91.

    Zaidner, Y. & Weinstein-Evron, M. The emergence of the Levallois technology in the Levant: A view from the Early Middle Paleolithic site of Misliya Cave. Israel. J. Hum. Evol. 2020, 102785 (2020).

    Article 

    Google Scholar 

  • 92.

    Jacobs, G. S. et al. Multiple deeply divergent Denisovan ancestries in papuans. Cell 177, 1010-1021.e32 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell 173, 53-61.e9 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Sankararaman, S. et al. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans report the combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1–7 (2016).

    Article 
    CAS 

    Google Scholar 

  • 95.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 96.

    Blott, S. J. & Pye, K. Technical communication Gradistat : A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 26, 1237–1248 (2001).

    Article 
    ADS 

    Google Scholar 

  • 97.

    Keeling, P. S. Some experiments on the low-temperature removal of carbonaceous material from clays. Clay Miner. Bull. 62, 155–158 (1962).

    Article 
    ADS 

    Google Scholar 

  • 98.

    Ball, D. F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci. 15, 84–92 (1964).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Dean, W. E. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Res. 44, 242–248 (1974).

    CAS 

    Google Scholar 

  • 100.

    Bengtsson, L. & Enell, M. Chemical analysis. in Handbook of Holocene Paleoecology and Paleohydrology (eds. Bengtsson, L., Enell, M. & Berglund, B. E.) 423–454 (Wiley, 1986).

  • 101.

    Juggins, S. rioja: Anlaysis of Quaternary science data. R Doc. 1–58 (2015).

  • 102.

    Team, R. D. C. R: A Language and Environment for Statistical Computing. http://www.r-project.org (2020).

  • 103.

    Parker, A. An index of weathering for silicate rocks. Geol. Mag. 107, 501–504 (1970).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 104.

    Nesbitt, H. W. & Young, G. M. Formation and diagenesis of weathering profiles. J. Geol. 2, 129–147 (1989).

    Article 
    ADS 

    Google Scholar 

  • 105.

    Piperno, D. R. Phytolith Analysis: An Archaeological and Geological Perspective. (Academic Press, 1988).

  • 106.

    Twiss, P. A Curmudgeon’s view of grass phytolithology. in Phytoliths: Applications in Earth Sciences and Human History (ed. Meunier, J. D.) 7–25 (A.A. Balkema Publishers, 2001).

  • 107.

    Eksambekar, S. Contribution of the Study of Phytoliths to Bioarchaeology. (Deccan College PGRI, 2002).

  • 108.

    Durcan, J., King, E. G. & Duller, G. A. T. DRAC : Dose rate and age calculator for trapped charge dating DRAC : Dose rate and age calculator for trapped charge dating. Quat. Geochronol. 28, 54–61 (2015).

    Article 

    Google Scholar 

  • 109.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 110.

    Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 4–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • 111.

    Caley, T. et al. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 433–444 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 112.

    Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).

    Article 
    ADS 

    Google Scholar 

  • 113.

    Bolton, C. T. et al. A 500,000 year record of Indian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column structure. Quat. Sci. Rev. 77, 167–180 (2013).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    New “risk triage” platform pinpoints compounding threats to US infrastructure

    A robot that finds lost items