in

A novel random forest approach to revealing interactions and controls on chlorophyll concentration and bacterial communities during coastal phytoplankton blooms

  • 1.

    Beardall, J. et al. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. https://doi.org/10.1111/j.1469-8137.2008.02660.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. https://doi.org/10.4319/lo.2009.54.6_part_2.2283 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Williamson, C. E., Saros, J. E. & Schindler, D. W. Sentinels of change. Science (N. Y.) https://doi.org/10.1126/science.1169443 (2009).

    Article 

    Google Scholar 

  • 4.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science https://doi.org/10.1126/science.281.5374.237 (1998).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. https://doi.org/10.1038/ismej.2014.197 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Paerl, H. W. & Huisman, J. Blooms like it hot. Science (N. Y.) https://doi.org/10.1126/science.1155398 (2008).

    Article 

    Google Scholar 

  • 7.

    Wells, M. L. et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae https://doi.org/10.1016/j.hal.2015.07.009 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Smith, J. et al. A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California. Harmful Algae https://doi.org/10.1016/j.hal.2018.07.007 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. https://doi.org/10.1002/2016GL070023 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Ekstrom, J. A., Moore, S. K. & Klinger, T. Examining harmful algal blooms through a disaster risk management lens: A case study of the 2015 U.S. West Coast domoic acid event. Harmful Algae https://doi.org/10.1016/j.hal.2020.101740 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 11.

    Kudela, R. M. & Chavez, F. P. The impact of coastal runoff on ocean color during an El Niño year in Central California. Deep Sea Res. Part II Topical Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2004.04.002 (2004).

    Article 

    Google Scholar 

  • 12.

    Kudela, R. M., Lane, J. Q. & Cochlan, W. P. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.019 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Fischer, A. M., Ryan, J. P., Levesque, C. & Welschmeyer, N. Characterizing estuarine plume discharge into the coastal ocean using fatty acid biomarkers and pigment analysis. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2014.04.006 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Ryan, J. P. et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys. Res. Lett. https://doi.org/10.1002/2017GL072637 (2017).

    Article 

    Google Scholar 

  • 15.

    Van Meter, K. J., Basu, N. B. & Van Cappellen, P. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochem. Cycles https://doi.org/10.1002/2016GB005498 (2017).

    Article 

    Google Scholar 

  • 16.

    Conley, D. J. et al. Ecology – Controlling eutrophication: Nitrogen and phosphorus. Science https://doi.org/10.1126/science.1167755 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science https://doi.org/10.1126/science.aan2409 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Howard, M. D. A. et al. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnol. Oceanogr. https://doi.org/10.4319/lo.2014.59.1.0285 (2014).

    Article 

    Google Scholar 

  • 19.

    Harvey, E. L. et al. A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00059 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Sison-Mangus, M. P., Jiang, S., Tran, K. N. & Kudela, R. M. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. https://doi.org/10.1038/ismej.2013.138 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Skerratt, J. H., Bowman, J. P., Hallegraeff, G., James, S. & Nichols, P. D. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps244001 (2002).

    Article 

    Google Scholar 

  • 22.

    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps010257 (1983).

    Article 

    Google Scholar 

  • 24.

    Platt, T. Concepts in biological oceanography: An interdisciplinary primer (P. A. Jumars). Limnol. Oceanogr. https://doi.org/10.4319/lo.1993.38.8.1842 (1993).

    Article 

    Google Scholar 

  • 25.

    Larsson, U. & Hagström, A. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. https://doi.org/10.1007/BF00398133 (1979).

    Article 

    Google Scholar 

  • 26.

    Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature https://doi.org/10.1038/17351 (1999).

    Article 

    Google Scholar 

  • 27.

    Ammerman, J. W. & Azam, F. Bacterial 5’-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science https://doi.org/10.1126/science.227.4692.1338 (1985).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Sison-Mangus, M. P., Jiang, S., Kudela, R. M. & Mehic, S. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01433 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.250 (2019).

    Article 

    Google Scholar 

  • 31.

    McGillicuddy, D. J. et al. GEOHAB modelling: Linking Observations to Predictions: A Workshop Report (Galway, Ireland, 2011).

  • 32.

    Song, W., Dolan, J. M., Cline, D. & Xiong, G. Learning-based algal bloom event recognition for oceanographic decision support system using remote sensing data. Remote Sens. https://doi.org/10.3390/rs71013564 (2015).

    Article 

    Google Scholar 

  • 33.

    Kwon, Y. S. et al. Developing data-driven models for quantifying Cochlodinium polykrikoides using the geostationary ocean color imager (GOCI). Int. J. Remote Sens. https://doi.org/10.1080/01431161.2017.1381354 (2018).

    Article 

    Google Scholar 

  • 34.

    Asnaghi, V. et al. A novel application of an adaptable modeling approach to the management of toxic microalgal bloom events in coastal areas. Harmful Algae https://doi.org/10.1016/j.hal.2017.02.003 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Valbi, E. et al. A model predicting the PSP toxic dinoflagellate Alexandrium minutum occurrence in the coastal waters of the NW Adriatic Sea. Sci. Rep. https://doi.org/10.1038/s41598-019-40664-w (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    El Hourany, R. et al. Phytoplankton diversity in the mediterranean sea from satellite data using self-organizing maps. J. Geophys. Res. Oceans 124, 5827–5843 (2019).

    Article 
    ADS 

    Google Scholar 

  • 37.

    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Ascioti, F. A., Beltrami, E., Carroll, T. O. & Wirick, C. Is there chaos in plankton dynamics?. J. Plankton Res. 15, 603–617 (1993).

    Article 

    Google Scholar 

  • 39.

    Basu, S., Kumbier, K., Brown, J. B. & Yu, B. Iterative random forests to discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1711236115 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 40.

    Breiman, L. Random forests. Mach. Learn. https://doi.org/10.1023/A:1010933404324 (2001).

    Article 
    MATH 

    Google Scholar 

  • 41.

    Witten, I. H., Cunningham, S., Holmes, G., McQueen, R. J. & Smith, L. A. Practical machine learning and its potential application to problems in agriculture. In Proceedings of New Zealand Computer Conference (1993).

  • 42.

    Lee, J. & Sison-Mangus, M. A Bayesian semiparametric regression model for joint analysis of microbiome data. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00522 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • 43.

    Hirsch, R. M., Moyer, D. L. & Archfield, S. A. Weighted regressions on time, discharge, and season (WRTDS), with an application to chesapeake bay river inputs. J. Am. Water Resour. Assoc. https://doi.org/10.1111/j.1752-1688.2010.00482.x (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Shuler, K., Sison-Mangus, M. & Lee, J. Bayesian sparse multivariate regression with asymmetric nonlocal priors for microbiome data analysis. Bayesian Anal. https://doi.org/10.1214/19-ba1164 (2019).

    Article 
    MATH 

    Google Scholar 

  • 45.

    Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science https://doi.org/10.1126/science.1218344 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    Klindworth, A. et al. Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar. Genom. https://doi.org/10.1016/j.margen.2014.08.007 (2014).

    Article 

    Google Scholar 

  • 47.

    Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L. & Post, A. F. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00646 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Delmont, T. O., Murat Eren, A., Vineis, J. H. & Post, A. F. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01090 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Kempnich, M. W. & Sison-Mangus, M. P. Presence and abundance of bacteria with the Type VI secretion system in a coastal environment and in the global oceans. PLoS ONE 15, e0244217 (2020).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8, (2019).

  • 51.

    Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions – R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).

    CAS 
    Article 

    Google Scholar 

  • 52.

    van den Boogaart, K. G. & Tolosana-Delgado, R. ‘compositions’: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).

    Article 
    ADS 

    Google Scholar 

  • 53.

    Heisler, J. et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.006 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. https://doi.org/10.4319/lo.2006.51.1_part_2.0364 (2006).

    Article 

    Google Scholar 

  • 55.

    Hamasaki, K. Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Western Japan, as a reflection of changing environmental conditions. J. Plankton Res. https://doi.org/10.1093/plankt/23.3.271 (2001).

    Article 

    Google Scholar 

  • 56.

    Leong, S. C. Y., Murata, A., Nagashima, Y. & Taguchi, S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon https://doi.org/10.1016/j.toxicon.2004.01.015 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 57.

    Howard, M. D. A., Cochlan, W. P., Ladizinsky, N. & Kudela, R. M. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments. Harmful Algae https://doi.org/10.1016/j.hal.2006.06.003 (2007).

    Article 

    Google Scholar 

  • 58.

    Lane, J. Q., Raimondi, P. T. & Kudela, R. M. Development of a logistic regression model for the prediction of toxigenic pseudo-nitzschia blooms in monterey bay, California. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps07999 (2009).

    Article 

    Google Scholar 

  • 59.

    Lecher, A. L. et al. Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey bay, CA. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b00909 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 60.

    Bakun, A. Coastal Upwelling Indices, West Coast of North America, 1946–71. (1972).

  • 61.

    Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West coast. J. Geophys. Res. Oceans 123, 7332–7350 (2018).

    Article 
    ADS 

    Google Scholar 

  • 62.

    Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science https://doi.org/10.1126/science.aag1058 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Sawyer, A. H., Michael, H. A. & Schroth, A. W. From soil to sea: The role of groundwater in coastal critical zone processes. Wiley Interdiscip. Rev. Water https://doi.org/10.1002/wat2.1157 (2016).

    Article 

    Google Scholar 

  • 64.

    Garneau, M. È. et al. Examination of the seasonal dynamics of the toxic dinoflagellate Alexandrium catenella at Redondo Beach, California, by quantitative PCR. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.06174-11 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Schiff, K. C., Allen, M. J., Zeng, E. Y. & Bay, S. M. Southern California. Seas Millenn. Environ. Eval. https://doi.org/10.1097/00006205-197605000-00010 (2000).

    Article 

    Google Scholar 

  • 66.

    Nelson, N. G. et al. Revealing biotic and abiotic controls of harmful algal blooms in a shallow subtropical lake through statistical machine learning. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b05884 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00659 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Wagner-Döbler, I. & Biebl, H. Environmental biology of the marine roseobacter lineage. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev.micro.60.080805.142115 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 69.

    Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. https://doi.org/10.1111/1574-6941.12122 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 70.

    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 71.

    Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12017 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Tully, B. J., Sachdeva, R., Heidelberg, K. B. & Heidelberg, J. F. Comparative genomics of planktonic Flavobacteriaceae from the Gulf of Maine using metagenomic data. Microbiome https://doi.org/10.1186/2049-2618-2-34 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. https://doi.org/10.1016/S0168-6496(01)00206-9 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 74.

    Pinhassi, J. et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.70.11.6753-6766.2004 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3326 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 76.

    Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Buchan, A., González, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.71.10.5665-5677.2005 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Rajapitamahuni, S., Bachani, P., Sardar, R. K. & Mishra, S. Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. J. Appl. Phycol. https://doi.org/10.1007/s10811-018-1591-2 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Phytoplankton biodiversity and the inverted paradox

    Rover images confirm Jezero crater is an ancient Martian lake