in

Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying

  • 1.

    Fageria N. Yield physiology of rice. J Plant Nutr. 2007;30:843–79.

    CAS 

    Google Scholar 

  • 2.

    Wang Z, Zhang W, Beebout S, Zhang H, Liu L, Yang J, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016;193:54–69.

    Google Scholar 

  • 3.

    Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009;49:2246–60.

    Google Scholar 

  • 4.

    Bouman B, Tuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agr Water Manag. 2001;49:11–30.

    Google Scholar 

  • 5.

    Harrison M, Tardieu F, Dong Z, Messina C, Hammer G. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Change Biol. 2014;20:867–78.

    Google Scholar 

  • 6.

    Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84–87.

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Thorup-Kristensen K, Kirkegaard J. Root system-based limits to agricultural productivity and efficiency: the farming systems context. Ann Bot. 2016;118:573–92.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res. 2012;126:16–22.

    Google Scholar 

  • 9.

    Danin A. Plant adaptations to environmental stresses in desert dunes. In: Danin A (ed). Plants of desert dunes. (Springer, Berlin, 1996), pp 133–152.

  • 10.

    Pang J, Ryan M, Siddique K, Simpson R. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.

    CAS 

    Google Scholar 

  • 11.

    Marasco R, Mosqueira M, Fusi M, Ramond J, Merlino G, Booth J, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Zhang Y, Du H, Gui Y, Xu F, Liu J, Zhang J, et al. Moderate water stress induces rice rhizosheath formation associated with ABA and auxin responses. J Exp Bot. 2020;71:2740–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Duell R, Peacock G. Rhizosheaths on mesophytic grasses. Crop Sci. 1985;25:880–3.

    Google Scholar 

  • 14.

    Ndour P, Gueye M, Barakat M, Ortet P, Bertrand-Huleux M, Pablo A, et al. Pearl millet genetic traits shape rhizobacterial diversity and modulate rhizosphere aggregation. Front Plant Sci. 2017;8:1288.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Philippot L, Raaijmakers J, Lemanceau P, van der Putten W. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Ndour P, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.

    CAS 

    Google Scholar 

  • 17.

    George T, Brown L, Ramsay L, White P, Newton A, Bengough A, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). N Phytol. 2014;203:195–205.

    CAS 

    Google Scholar 

  • 18.

    Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacterial associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Basirat M, Mousavi S, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil. 2019;445:565–75.

    CAS 

    Google Scholar 

  • 20.

    Othman A, Amer W, Fayez M, Hegazi N. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.

    PubMed 

    Google Scholar 

  • 21.

    Haling R, Richardson A, Culvenor R, Lambers H, Simpson R. Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil. 2010;335:457–68.

    CAS 

    Google Scholar 

  • 22.

    Delhaize E, James R, Ryan P. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. N Phytol.2012;195:609–19.

    CAS 

    Google Scholar 

  • 23.

    Liu T, Ye N, Song T, Cao Y, Gao B, Zhang D, et al. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. J Integr Plant Biol. 2019;61:449–62.

    PubMed 

    Google Scholar 

  • 24.

    Liu T, Chen M, Zhang Y, Zhu F, Liu Y, Tian Y, et al. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta. 2019;250:1355–69.

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Brown L, George T, Neugebauer K, White P. The rhizosheath–a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.

    CAS 

    Google Scholar 

  • 26.

    Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, et al. Piriformospora indica affects plant growth by auxin production. Physiol Plant. 2007;131:581–9.

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Weiβ M, Waller F, Zuccaro A, Selosse M. Sebacinales-one thousand and one interactions with land plants. N Phytol. 2016;211:20–40.

    Google Scholar 

  • 28.

    Vadassery J, Ranf S, Drzewiecki C, Mithoer A, Mazars C, Scheel D, et al. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. 2009;59:193–206.

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Lee Y, Johnson J, Chien C, Sun C, Cai D, Lou B, et al. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact. 2011;24:421–31.

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Dong S, Tian Z, Chen P, Senthil Kumar R, Shen C, Cai D, et al. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot. 2013;64:4529–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Rani M, Raj S, Dayaman V, Kumar M, Dua M, Johri A. Functional characterization of a hexose transporter from root endophyte Piriformospora indica. Front Microbiol. 2016;7:1083.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Prasad D, Verma N, Bakshi M, Narayan O, Singh A, Dua M, et al. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol. 2018;9:3231.

    PubMed 

    Google Scholar 

  • 33.

    Narayan O, Verma N, Jogawat A, Dua M, Johri A. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. Plant Cell. 2021;33:1268–85.

    PubMed 

    Google Scholar 

  • 34.

    Baltruschat H, Fodor J, Harrach B, Niemcayk E, Barna B, Gullner G, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. N Phytol. 2008;180:501–10.

    CAS 

    Google Scholar 

  • 35.

    Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 2013;8:e26891.

    PubMed Central 

    Google Scholar 

  • 36.

    Fakhro A, Andrade-Linares D, von Bargen S, Bandte M, Buttner C, Grosch R. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 2010;20:191–200.

    PubMed 

    Google Scholar 

  • 37.

    Sarma M, Kumar V, Saharan K, Srivastava R, Sharma A, Prakash A, et al. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol. 2011;111:456–66.

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, et al. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol. 2014;14:268.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Abdelaziz M, Abdelsattar M, Abdeldaym E, Atia M, Mahmoud A, Saad M, et al. Piformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic. 2019;256:108532.

    CAS 

    Google Scholar 

  • 40.

    Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, et al. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav. 2017;13:e1414121.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Pion M, Spangenberg J, Simon A, Bindschedler S, Flury C, Chatelain A, et al. Bacterial farming by the fungus Morchella crassipes. Proc R Soc B. 2013;280:20132242.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Guhr A, Borken W, Spohn M, Matzner E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci USA. 2015;112:14647–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Warmink J, Nazir R, van Elsas J. Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol. 2009;11:300–12.

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Nazir R, Warmink J, Boersma H, van Elsas J. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol. 2010;71:169–85.

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, et al. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot. 2018;69:385–97.

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Bütehorn B, Rhody D, Franken P. Isolation and characterization of Pitef1 encoding the translation elongation factor EF-1α of the root endophyte Piriformospora indica. Plant Biol. 2008;2:687–92.

    Google Scholar 

  • 47.

    Haling R, Brown L, Bengough A, Young I, Hallett P, White P, et al. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot. 2013;64:3711–21.

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Hou M, Luo F, Wu D, Zhang X, Lou M, Shen D, et al. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. N Phytol 2021;229:935–49.

    CAS 

    Google Scholar 

  • 49.

    Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q, et al. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J Agr Food Chem. 2013;61:3774–80.

    CAS 

    Google Scholar 

  • 50.

    Xu F, Wang K, Yuan W, Xu W, Liu S, Kronzucker H, et al. Overexpression of aquaporin OsPIP1;2 in rice improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J Exp Bot. 2019;70:671–81.

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One. 2012;7:e48479.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Bodenhausen N, Horton M, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One. 2013;8:e56329.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Schlaeppi K, Dombrowski N, Oter R, Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Edgar R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Edgar R. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Wang Q, Garrity G, Tiedje J, Cole J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7.

    CAS 

    Google Scholar 

  • 60.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    PubMed 

    Google Scholar 

  • 61.

    Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75:7537–41.

    CAS 

    Google Scholar 

  • 62.

    Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, et al. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils. 2013;49:435–46.

    Google Scholar 

  • 63.

    Turner J, Backman P. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 1991;75:347–53.

    Google Scholar 

  • 64.

    Wei Z, Gu Y, Friman V, Kowalchuk G, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Zhang W, Li X, Sun K, Tang M, Xu F, Zhang M, et al. Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME J. 2020;14:1015–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Mela F, Fritsche K, de Boer W, van Veen J, de Graaff L, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Berendsen R, Vismans G, Yu K, Song Y, de Jonge R, Burgman W, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:13386–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature. 2020;580:653–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis M, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.

    PubMed 

    Google Scholar 

  • 72.

    Preece C, Peñuelas J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil. 2016;409:1–17.

    CAS 

    Google Scholar 

  • 73.

    Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol. 2000;2:333–42.

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Alami Y, Achouak W, Marol C, Heulin T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol. 2000;66:3393–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Berge O, Lodhi A, Brandelet G, Santaella C, Roncato M, Christen R, et al. Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol. 2009;59:367–72.

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Moreno-Espíndola I, Rivera-Becerril F, de Jesús F-GM, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.

    Google Scholar 

  • 77.

    Watt M, Mccully M, Canny M. Formation and stabilization of rhizosheaths of Zea mays L. (effect of soil water content). Plant Physiol. 1994;106:179–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Schafer P, Pfiffi S, Voll L, Zajic D, Chandler P, Waller F, et al. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 2009;59:461–74.

    PubMed 

    Google Scholar 

  • 79.

    Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. N Phytol. 2013;197:139–50.

    CAS 

    Google Scholar 

  • 80.

    Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45:1097–102.

    CAS 
    PubMed 

    Google Scholar 

  • 81.

    Luschnig C, Gaxiola R, Grisafi P, Fink G. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12:2175–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998;17:6903–11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    de Boer W, Folman R, Summerbell R, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.

    PubMed 

    Google Scholar 

  • 84.

    Hogan D, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002;296:2229–32.

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Ravnskov S, Nybroe O, Jakobsen I. Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. N Phytol. 1999;142:113–22.

    Google Scholar 

  • 86.

    Torsvik V, Øvreas L, Thingstad T. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 2002;296:1064–6.

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Wamberg C, Christensen S, Jakobsen I, Müller A, Sørensen S. The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem. 2003;35:1349–57.

    CAS 

    Google Scholar 

  • 88.

    van Hees P, Rosling A, Essen S, Godbold D, Jones D, Finlay R. Oxalate and ferricrocin exudation by the extrametrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. N Phytol. 2006;169:367–78.

    Google Scholar 


  • Source: Ecology - nature.com

    Phytoplankton biodiversity and the inverted paradox

    Rover images confirm Jezero crater is an ancient Martian lake