in

A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.)

  • 1.

    Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).

    Article 

    Google Scholar 

  • 2.

    R4P Network. Trends and challenges in pesticide resistance detection. Trends Plant Sci. 21, 834–853 (2016).

  • 3.

    Heap, I. M. The international herbicide-resistant weed database. http://www.weedscience.org/Home.aspx (2021).

  • 4.

    Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Gaines, T. A. et al. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295, 10307–10330 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Murphy, B. P. & Tranel, P. J. Target-site mutations conferring herbicide resistance. Plants 8, 382 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Beckie, H. J. & Tardif, F. J. Herbicide cross resistance in weeds. Crop Prot. 35, 15–28 (2012).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Han, H. et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J. 105, 79–92 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Kreiner, J. M. et al. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. Proc. Natl. Acad. Sci. 116, 21076–21084 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Milani, A. et al. Population structure and evolution of resistance to acetolactate synthase (ALS)-inhibitors in Amaranthus tuberculatus in Italy. Pest Manag. Sci. 77, 2971–2980 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Clements, D. R. et al. Adaptability of plants invading North American cropland. Agric. Ecosyst. Environ. 104, 379–398 (2004).

    Article 

    Google Scholar 

  • 12.

    Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia. J. Ecol. 103, 1069–1098 (2015).

    Article 

    Google Scholar 

  • 13.

    Cowbrough, M. J., Brown, R. B. & Tardif, F. J. Impact of common ragweed (Ambrosia artemisiifolia) aggregation on economic thresholds in soybean. Weed Sci. 51, 947–954 (2003).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Swinton, S. M., Buhler, D. D., Forcella, F., Gunsolus, J. L. & King, R. P. Estimation of crop yield loss due to interference by multiple weed species. Weed Sci. 42, 103–109 (1994).

    Article 

    Google Scholar 

  • 15.

    Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds: Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55, 463–476 (1975).

  • 16.

    Chauvel, B., Dessaint, F., Cardinal-Legrand, C. & Bretagnolle, F. The historical spread of Ambrosia artemisiifolia L. France from herbarium records. J. Biogeogr. 33, 665–673 (2006).

    Article 

    Google Scholar 

  • 17.

    Sala, C. A., Bulos, M., Altieri, E. & Ramos, M. L. Genetics and breeding of herbicide tolerance in sunflower. Helia 35, 57–69 (2012).

    Article 

    Google Scholar 

  • 18.

    Yu, Q. & Powles, S. B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 70, 1340–1350 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Tranel, P. J., Wright, T. R. & Heap, I. M. ALS mutations from resistant weeds. http://www.weedscience.com (2021).

  • 20.

    Patzoldt, W. L., Tranel, P. J., Alexander, A. L. & Schmitzer, P. R. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49, 485–490 (2001).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Rousonelos, S. L., Lee, R. M., Moreira, M. S., VanGessel, M. J. & Tranel, P. J. Characterization of a common ragweed (Ambrosia artemisiifolia) population resistant to ALS- and PPO-inhibiting herbicides. Weed Sci. 60, 335–344 (2012).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Zheng, D., Patzoldt, W. L. & Tranel, P. J. Association of the W574L ALS substitution with resistance to cloransulam and imazamox in common ragweed (Ambrosia artemisiifolia). Weed Sci. 53, 424–430 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Van Wely, A. C. et al. Glyphosate and acetolactate synthase inhibitor resistant common ragweed (Ambrosia artemisiifolia L.) in southwestern Ontario. Can. J. Plant Sci. 95, 335–338 (2015)

  • 24.

    Marsan-Pelletier, F., Vanasse, A., Simard, M.-J. & Cuerrier, M.-E. Survey of imazethapyr-resistant common ragweed (Ambrosia artemisiifolia L.) in Quebec. Phytoprotection 99, 36–44 (2019).

  • 25.

    Owen, M. D. & Zelaya, I. A. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61, 301–311 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 64, 319–325 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Barnes, E. R., Knezevic, S. Z., Sikkema, P. H., Lindquist, J. L. & Jhala, A. J. Control of glyphosate-resistant common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean [Glycine max (L.) Merr]. Front. Plant Sci. 8, 1455 (2017).

  • 28.

    Tranel, P. J. & Wright, T. R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned?. Weed Sci. 50, 700–712 (2002).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Li, J., Li, M., Gao, X. & Fang, F. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag. Sci. 73, 2538–2543 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Duggleby, R. G., Pang, S. S., Yu, H. & Guddat, L. W. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. Eur. J. Biochem. 270, 2895–2904 (2003).

  • 31.

    Jung, S.-M. et al. Amino acid residues conferring herbicide resistance in tobacco acetohydroxyacid synthase. Biochem. J. 383, 53–61 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Owen, M. J., Walsh, M. J., Llewellyn, R. S. & Powles, S. B. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 58, 711–718 (2007).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Owen, M. J., Martinez, N. J. & Powles, S. B. Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res. 54, 314–324 (2014).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Délye, C. Nucleotide variability at the acetyl coenzyme A carboxylase gene and the signature of herbicide selection in the grass weed Alopecurus myosuroides (Huds.). Mol. Biol. Evol. 21, 884–892 (2004).

  • 35.

    Délye, C., Clément, J. A. J., Pernin, F., Chauvel, B. & Le Corre, V. High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic Appl. Ecol. 11, 504–512 (2010).

    Article 

    Google Scholar 

  • 36.

    Délye, C., Pernin, F. & Scarabel, L. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci. 180, 333–342 (2011).

  • 37.

    Sudheesh, M. An analysis of polygenic herbicide resistance evolution and its management based on a population genetics approach. Basic Appl. Ecol. 16, 104–111 (2015).

    Article 

    Google Scholar 

  • 38.

    Bullock, J. M. Assessing and controlling the spread and the effects of common ragweed in Europe. Report, Contractor: Natural environment research Council UK (2012).

  • 39.

    Yu, Q., Nelson, J. K., Zheng, M. Q., Jackson, J. & Powles, S. B. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag. Sci. 63, 918–927 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Simard, M.-J., Laforest, M., Soufiane, B., Benoit, D. L. & Tardif, F. Linuron resistant common ragweed (Ambrosia artemisiifolia) populations in Quebec carrot fields: presence and distribution of target-site and non-target site resistant biotypes. Can. J. Plant Sci. 98, 345–352 (2017).

    Google Scholar 

  • 41.

    Ganie, Z., Jugulam, M., Varanasi, V. & Jhala, A. J. Investigating mechanism of glyphosate resistance in a common ragweed (Ambrosia artemisiifolia L.) biotype from Nebraska. Can. J. Plant Sci. (2017). https://doi.org/10.1139/CJPS-2017-0036.

  • 42.

    Duhoux, A., Carrère, S., Duhoux, A. & Délye, C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Sci. 257, 22–36 (2017).

  • 43.

    Gardin, J. A. C., Gouzy, J., Carrère, S. & Délye, C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics 16, 590 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Torra, J. et al. Target-site and non-target-site resistance mechanisms confer multiple and cross- resistance to ALS and ACCase inhibiting herbicides in Lolium rigidum from Spain. Front. Plant Sci. 12, 625138 (2021).

  • 45.

    Manley, B. S., Hatzios, K. K. & Wilson, H. P. Absorption, translocation, and metabolism of chlorimuron and nicosulfuron in imidazolinone-resistant and susceptible smooth pigweed (Amaranthus hybridus). Weed Technol. 13, 759–764 (1999).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Jeffers, G. M., O’Donovan, J. T. & Hall, L. M. Wild mustard (Brassica kaber) resistance to ethametsulfuron but not to other herbicides. Weed Technol. 10, 847–850 (1996).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Veldhuis, L. J., Hall, L. M., O’Donovan, J. T., Dyer, W. & Hall, J. C. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48, 2986–2990 (2000).

  • 48.

    Scarabel, L., Pernin, F. & Délye, C. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci. 238, 158–169 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Nakka, S., Thompson, C. R., Peterson, D. E. & Jugulam, M. Target site-based and non-target site based resistance to ALS Inhibitors in Palmer Amaranth (Amaranthus palmeri). Weed Sci. 65, 681–689 (2017).

    Article 

    Google Scholar 

  • 50.

    Meyer, L. et al. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLOS ONE 12, e0176197 (2017).

  • 51.

    Van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Délye, C. et al. Harnessing the power of next-generation sequencing technologies to the purpose of high-throughput pesticide resistance diagnosis. Pest Manag. Sci. 76, 543–552 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Délye, C., Matéjicek, A. & Gasquez, J. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58, 474–478 (2002).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Duggleby, R. G., McCourt, J. A. & Guddat, L. W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46, 309–324 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar 

  • 56.

    Neff, M. M., Neff, J. D., Chory, J. & Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Délye, C. & Boucansaud, K. A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Res. 48, 97–101 (2008).

    Article 

    Google Scholar 

  • 58.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ddCT method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Phytoplankton biodiversity and the inverted paradox

    Rover images confirm Jezero crater is an ancient Martian lake