in

Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram

  • 1.

    Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 4, 177–187 (2013).

    Google Scholar 

  • 2.

    Jamshidi-Kia, F., Lorigooini, Z. & Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol. 7(1), 1–7 (2018).

    Article 

    Google Scholar 

  • 3.

    Yuan, H., Ma, Q., Ye, L. & Piao, G. The traditional medicine and modern medicine from natural products. Molecules 21, 559–577 (2016).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Ali, H., Khan, E. & Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 1–14 (2019).

  • 5.

    Jedrejek, D. et al. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem. Toxicol. 126, 233–247 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    British Hebal Medicine Association, Available from: http://www.bhma.info.

  • 7.

    Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants 3rd edn. (CRC Press, 2001).

    Google Scholar 

  • 8.

    Petrova, S., Yurukova, L. & Velcheva, I. Taraxacum officinale as a biomonitor of metals and toxic elements (Plovdiv, Bulgaria). Bul. J. Agric. Sci. 19, 241–247 (2013).

    Google Scholar 

  • 9.

    Kano, N. et al. Study on the behavior and removal of cadmium and zinc using Taraxacum officinale and gazania under the application of biodegradable chelating agents. Appl. Sci. 11, 1557–1574 (2021).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Hammammi, H. et al. Weeds ability to phytoremediate cadmium-contaminated soil. Intern. J. Phyt. 18(1), 48–53 (2016).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Spychalski, G. Determinations of growing herbs in Polish agriculture. Herba polonica 59(4), 6–18 (2013).

    Article 

    Google Scholar 

  • 12.

    Różański, L. Vademecum of pesticides 97/98. Agra-Enviro Lab. (1998).

  • 13.

    Rajeswara, R. B. R. et al. Cultivation Technology for Economically Important Medicinal Plants in Advances in Medicinal Plants, ed. Reddy K.J, Bahadur B., Bhadraiah B., Rao M. L. N., Universities Press (2015).

  • 14.

    Agro-techniques of selected medicinal plants, National Medicinal Plants Board, India, (2008).

  • 15.

    Almeida, F., Rodrigues, M. L. & Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 10, 1–5 (2019).

    Article 

    Google Scholar 

  • 16.

    Bruni, R., Bellardi, M. G. & Parrella, G. Change in chemical composition of sweet basil (Ocimum basilicum L.) essential oil caused by alfalfa mosaic virus. J. Phytopat. 164, 202–206 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Damalas, C. A. & Koutroubas, S. D. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 4, 1–10 (2016).

    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Lazo, C. R., Miller, G. W. Thiram, Encyclopedia of Toxicology (Third Edition), Wexler P, US National Library of Medicine, MD, USA, pp. 558–559 (Bethesda 2014).

  • 19.

    Dias, M. C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Botany 2012, 1–4 (2012).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Gupta, B., Rani, M. & Kumar, R. Degradation of thiram in water, soil and plants: A study by high-performance liquid chromatography. Biomed. Chromat. 26, 69–75 (2012).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Sá da Silva, V. A. et al. Electrochemical evaluation of pollutants in the environment: Interaction between the metal Ions Zn(II) and Cu(II) with the fungicide thiram in billings dam. Electroanalysis 32, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Filipe, O. M. S., Costa, C. A. E., Vidal, M. M. & Santos, E. B. H. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils. Chemosphere 90, 432–440 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Adamczyk-Szabela, D., Romanowska-Duda, Z., Lisowska, K. & Wolf, W. M. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water Air Soil Pollut. 228, 334 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Oliva, J. et al. Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem. 229, 172–177 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Associated effects of cadmium and copper alter the heavy metals uptake by Melissa Offcinalis. Molecules 24, 2458 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci. Rep. 10, 1675–1686 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    PN-ISO 10390:1997. Agricultural Chemical Analysis of the Soil. Determination of pH. 1997. Available from accessed 20 April 2019; http://sklep.pkn.pl/pn-iso-10390-1997p.html.

  • 28.

    ASTM D2974-00, 2000. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. Method D 2974–00; American Society for Testing and Materials: West Conshohocken, PA, USA.

  • 29.

    Schumacher, B. A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments (United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory, 2002).

    Google Scholar 

  • 30.

    PN-R-04024:1997 Chemical and agricultural analysis of soil – Determination of available phosphorus, potassium, magnesium and manganese in organic soils, accessed 25 April 2017; http://sklep.pkn.pl/pn-r-04024–1997p.html.

  • 31.

    Sherif, A. M., Elhussein, A. A. & Osman, A. G. Biodegradation of fungicide thiram (TMTD) in soil under laboratory conditions. Am. J. Biotech. Mol. Sci. 1(2), 57–68 (2011).

    Article 

    Google Scholar 

  • 32.

    Adamczyk-Szabela, D., Markiewicz, J. & Wolf, W. M. Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana offcinalis L. Water Air Soil Pollut. 226, 106–114 (2015).

  • 33.

    Dybczyński, R. et al. Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nuc. Chem. 259, 409–413 (2004).

    Article 

    Google Scholar 

  • 34.

    Piotrowski, K., Romanowska-Duda, Z. B. & Grzesik, M. How Biojodis and cyanobacteria alleviate the negative influence of predicted environmental constraints on growth and physiological activity of corn plants. Pol. J. Environ. Stud. 25, 741–751 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Kalaji, M. H. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 122, 121–127 (2016).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Mantzos, N. et al. QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. Int. J. Eviron. Anal. Chem. 93(15), 1566–1584 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Goodson, D. Z. Mathematical Methods for Physical and Analytical Chemistry (Wiley, 2011).

    MATH 
    Book 

    Google Scholar 

  • 38.

    Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model Anal. 2, 21–33 (2011).

    Google Scholar 

  • 39.

    Bordens, K. S. & Abbott, B. B. Research Design and Methods: A Process Approach 8th edn, 432–450 (McGraw-Hill, 2011).

    Google Scholar 

  • 40.

    Galal, T. M. & Shehata, H. S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Ind. 48, 244–251 (2015).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Liu, K. et al. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxi. Environ. Saf. 113, 207–213 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Shi, G. R. & Cai, Q. S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biolog. Plantarum 53(2), 391–394 (2009).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Testiati, E. et al. Trace metal and metalloid contamination levels in soils and two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard Mat. 248–249, 131–141 (2013).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Xiao, R. et al. Fractionation, transfer and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronsequence of reclamation in estuary of China. Sci. Total Environ. 517, 66–75 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Wang, S., Zhao, Y., Guo, J. & Zhou, L. Effects of Cd, Cu and Zn on Ricinus communis L. Growth in single element or co-contaminated soils: Pot experiments. Ecolog. Eng. 90, 347–351 (2016).

    Article 

    Google Scholar 

  • 46.

    IUSS Working Group WRB World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. (FAO)

  • 47.

    Regulation of the Minister of Environment 01.08.2016. Journal of Laws of Poland, Item 1395

  • 48.

    Antsotegi-Uskola, M., Markina-Iñarrairaegui, A. & Ugalde, U. New insights into copper homeostasis in filamentous fungi. Int. Microbiol. 23, 65–73 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Kabata-Pendias, A. & Pendias, H. Biogeochemistry of Trace Elements (PWN, 1999).

    Google Scholar 

  • 50.

    Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. Heavy metal stress and some mechanisms of plant defense response. The Sci. World J. 1–18 (2015).

  • 51.

    Maznah, Z., Halimah, M. & Ismaill, B. S. Evaluation of the persistence and leaching behaviour of thiram fungicide in soil, water and oil palm leaves. Bull. Environ. Contam. Toxicol. 100, 677–682 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Thomas, K. The environmental fate and behaviour of antifouling paint booster biocides: A review. Biofouling 17, 73–86 (2001).

    CAS 
    Article 

    Google Scholar 

  • 53.

    EPA. United States Environmental Protection Agency (EPA, 2004).

    Google Scholar 

  • 54.

    Gomes de Melo, B. A., Motta, F. L. & Santana, M. H. A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 62, 967–974 (2016).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Gupta, B., Rani, M., Kumar, R. & Dureja, P. Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J. Environ. Sci. Health, Part B 47, 823–831 (2012).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Adamczyk, D. The effect of thiuram on the uptake of lead and copper by Melissa officinalis. Environ. Eng. Sci. 23, 610–614 (2006).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Adamczyk, D. & Jankiewicz, B. The effect of thiuram on the uptake of copper, zinc and manganese by Valeriana officinalis L. Pol. J. Environ. Stud. 17(5), 823–826 (2008).

    CAS 

    Google Scholar 

  • 58.

    Singh, N., Gupta, V. K., Kumar, A. & Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 5(70), 1–9 (2017).

    Google Scholar 

  • 59.

    Skiba, E., Adamczyk-Szabela, D. & Wolf, W. M. Metal-based nanoparticles’ interactions with plants. In Plant Responses to Nanomaterials Recent Interventions, and Physiological and Biochemical Responses (eds Singh, V. P. et al.) 145–169 (Springer, 2021).

    Chapter 

    Google Scholar 

  • 60.

    Glebov, E. M., Grivin, V. P., Plyusnin, V. F. & Udaltsov, A. V. Manganese(II) complexes with diethylamine in aqueous solutions. J. Struct. Chem. 47, 476–483 (2006).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Liaoa, Y., Zhanga, S. & Dryfe, R. Electroless copper plating using dimethylamine borane as reductant. Particuology 10, 487–491 (2012).

    Article 
    CAS 

    Google Scholar 

  • 62.

    Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 26, 1–23 (2020).

    Google Scholar 

  • 63.

    Yruela, I. Transition metals in plant photosynthesis. Metallomics 5, 1090–1109 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Yüzbaşıoğlu, E. & Dalyan, E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol. Biochem. 135, 322–330 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Beauchamp, R. O. et al. A critical review of the literature on carbon disulfide toxicity. CRC Crit. Rev. Toxicol. 11, 169–278 (1983).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Norton, R., Mikkelsen, R. & Jensen, T. Sulfur for plant nutrition. Better Crops 97, 10–12 (2013).

    Google Scholar 

  • 67.

    Abdallah, M. et al. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 61, 2635–2646 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Inter-species interactions alter antibiotic efficacy in bacterial communities

    First report of an egg-predator nemertean worm in crabs from the south-eastern Pacific coast: Carcinonemertes camanchaco sp. nov