in

Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc

  • 1.

    Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).

    Article 

    Google Scholar 

  • 2.

    Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).

    Article 

    Google Scholar 

  • 3.

    Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, N. E. & Martínez, I. Case study of the implications of climate change for lichen diversity and distributions. Biodivers. Conserv. 26, 1121–1141 (2017).

    Article 

    Google Scholar 

  • 4.

    Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Ohdo, T. & Takahashi, K. Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants 12, plaa014 (2020).

  • 6.

    Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).

    Article 

    Google Scholar 

  • 7.

    Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).

    Article 

    Google Scholar 

  • 9.

    Grytnes, J. A. Ecological interpretations of the mid-domain effect. Ecol. Lett. 6, 883–888 (2003).

    Article 

    Google Scholar 

  • 10.

    Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: what have we learned so far?. Am. Nat. 163, E1–E23 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).

    Article 

    Google Scholar 

  • 12.

    Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).

    Article 

    Google Scholar 

  • 13.

    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).

    Article 

    Google Scholar 

  • 14.

    Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).

    Article 

    Google Scholar 

  • 15.

    Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).

    Article 

    Google Scholar 

  • 16.

    Jacquemyn, H., Honnay, O. & Pailler, T. Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on Réunion Island: implications for conservation. Biol. Cons. 136, 388–397 (2007).

    Article 

    Google Scholar 

  • 17.

    Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19, 729–739 (2015).

    Article 

    Google Scholar 

  • 19.

    Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. d. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11, e0157442 (2016).

  • 20.

    Zhou, G. et al. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Glob. Change Biol. 25, 1119–1132 (2019).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Chander, H. & Sapna, D. Sanjna. Species diversity of lichens in Balh Valley of Himachal Pradesh, North Western Himalaya. J. Biol. Chem. Chronicles 5, 32–40 (2019).

  • 23.

    Negi, H. R. On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya. J. Biosci. 25, 367–378 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Pinokiyo, A., Singh, K. P. & Singh, J. S. Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40, 47–62 (2008).

    Article 

    Google Scholar 

  • 25.

    Kumar, J. et al. Elevational controls of lichen communities in Zanskar valley, Ladakh, a Trans Himalayan cold desert. Trop. Plant Res. 1, 48–54 (2014).

    Google Scholar 

  • 26.

    Rashmi, S. & Rajkumar, H. Diversity of Lichens along Elevational Gradients in Forest Ranges of Chamarajanagar District, Karnataka State. Int. J. Sci. Res. Biol. Sci. 6, 1 (2019).

  • 27.

    Shukla, V., Upreti, D. K. & Bajpai, R. Lichens to Biomonitor the Environment. (Springer, 2014).

  • 28.

    Man-Rong, H. & Wei, G. Altitudinal gradients of lichen species richness in Tibet, China. PDR 34, 2–8 (2012).

    Google Scholar 

  • 29.

    Wolf, J. H. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 928–960 (1993).

  • 30.

    Pirintsos, S., Diamantopoulos, J. & Stamou, G. Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio 116, 33–40 (1995).

    Google Scholar 

  • 31.

    Grytnes, J. A., Heegaard, E. & Ihlen, P. G. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29, 241–246 (2006).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).

    Article 

    Google Scholar 

  • 33.

    Bässler, C. et al. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689–698 (2016).

    Article 

    Google Scholar 

  • 34.

    Rai, H., Khare, R., Upreti, D. K. & Nayaka, S. Terricolous Lichens in India 1–16 (Springer, 2014).

  • 35.

    Awasthi, D. D. Key to the Microlichens of India, Nepal and Sri Lanka. (J. Cramer, 1991).

  • 36.

    Sipman, H. J. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).

    Google Scholar 

  • 37.

    Awasthi, D. D. A Compendium of the Macrolichens from India, Nepal and Sri Lank. (Bishen Singh Mahendra Pal Sin, 2007).

  • 38.

    Singh, K. P. & Sinha, G. P. Indian Lichens: An Annotated Checklis. (Botanical Survey of Ind, 2010).

  • 39.

    Sinha, G., Nayaka, S. & Joseph, S. Additions to the checklist of Indian lichens after 2010. Cryptogam Biodivers. Assess. Spec. 197, 206 (2018).

    Google Scholar 

  • 40.

    Hsieh, T., Ma, K. & Chao, A. A Quick Introduction to iNEXT via Examples. http://chao.stat.nthu.edu.tw/wordpress (2016).

  • 41.

    Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R. & O’Hara, R.B. et al. Vegan: Community Ecology Package. R package version 2.5-7. http://CRAN.R-project.org/package=vegan (2015).

  • 42.

    Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Article 

    Google Scholar 

  • 43.

    Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • 45.

    Rathore, L., Attri, S. & Jaswal, A. State level climate change trends in India. India Meteorol. Dept. 25, 02 (2013).

    Google Scholar 

  • 46.

    Goni, R., Raina, A. K., Magotra, R. & Sharma, N. Lichen flora of Jammu and Kashmir State, India: An updated checklist. Trop. Plant Res. 2, 64–71 (2015).

    Google Scholar 

  • 47.

    Sinha, G. & Ram, T. Lichen diversity in Sikkim. In Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. 13–28. (Department of Information and Public Relations, Government of Sikkim, 2011).

  • 48.

    Mishra, G. K. & Upreti, D. K. Diversity and distribution of macro-lichen in Kumaun Himalaya, Uttarakhand. Int. J. Adv. Res. 4, 912–925 (2016).

    Google Scholar 

  • 49.

    Rai, H., Upreti, D. & Gupta, R. K. Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers. Conserv. 21, 97–113 (2012).

    Article 

    Google Scholar 

  • 50.

    Thell, A. et al. A review of the lichen family Parmeliaceae–history, phylogeny and current taxonomy. Nord. J. Bot. 30, 641–664 (2012).

    Article 

    Google Scholar 

  • 51.

    Cannon, P. F. & Kirk, P. M. Fungal Families of the World. (Cabi, 2007).

  • 52.

    Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. The elevation gradient of lichen species richness in Nepal. Lichenologist 42, 83–96 (2010).

  • 53.

    Rai, H., Khare, R., Baniya, C. B., Upreti, D. K. & Gupta, R. K. Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers. Conserv. 24, 1155–1174 (2015).

    Article 

    Google Scholar 

  • 54.

    Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159, 294–304 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722 (2017).

    Article 

    Google Scholar 

  • 56.

    Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31, 389–400 (2004).

    Article 

    Google Scholar 

  • 57.

    Grau, O., Grytnes, J. A. & Birks, H. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr. 34, 1907–1915 (2007).

    Article 

    Google Scholar 

  • 58.

    McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. eLS (2010).

  • 59.

    Gauslaa, Y. et al. Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 181, 683–692 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Nautiyal, M., Nautiyal, B. & Prakash, V. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24, 125–134 (2004).

    Article 

    Google Scholar 

  • 61.

    McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31 (2004).

    Article 

    Google Scholar 

  • 62.

    Baniya, C. B. Species Richness Patterns in Space and Time in the Himalayan Area. https://hdl.handle.net/1956/3861 (2010).

  • 63.

    Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Folia Geobot. 47, 135–151 (2012).

    Article 

    Google Scholar 

  • 64.

    da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24, 1277–1290 (2018).

    Article 

    Google Scholar 

  • 65.

    Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10, e0127692 (2015).

  • 66.

    Nanda, S. A., Reshi, Z. A., Ul-haq, M., Lone, A. & Mir, S. A. Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop. Ecol. 59, 211–224 (2018).

    Google Scholar 

  • 67.

    Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020).


  • Source: Ecology - nature.com

    Inter-species interactions alter antibiotic efficacy in bacterial communities

    First report of an egg-predator nemertean worm in crabs from the south-eastern Pacific coast: Carcinonemertes camanchaco sp. nov