in

Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes

  • 1.

    Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).

    Google Scholar 

  • 2.

    Churchill, E. R., Dytham, C. & Thom, M. D. F. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci. Rep. 9, 2167. https://doi.org/10.1038/s41598-019-38843-w (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Price, P. W. Strategies for egg production. Evolution 28(1), 76–84 (1974).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Roff, D. A. The Evolution of Life Histories. Theory and analysis (Chapman and Hall, 1992).

    Google Scholar 

  • 5.

    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108(962), 499–506 (1974).

    Article 

    Google Scholar 

  • 6.

    Durrant, K. et al. Comparative morphological trade-offs between pre- and post-copulatory sexual selection in Giant hissing cockroaches (Tribe: Gromphadorhini). Sci. Rep. 6, 36755. https://doi.org/10.1038/srep36755 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Timi, J. T., Lanfranchi, A. L. & Poulin, R. Is there a trade-off between fecundity and egg volume in the parasitic copepod Lernanthropus cynoscicola?. Parasitol. Res. 95, 1–4 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Cavaleiro, F. I. & Santos, M. J. Egg number–egg size: An important trade-off in parasite life history strategies. Int. J. Parasitol. 44, 173–182 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Poulin, R. Clutch size and egg size in free-living and parasitic copepods: A comparative analysis. Evolution 49(2), 325–336 (1995).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Caley, M. J., Schwarzkoff, L. & Shine, R. Does total reproductive effort evolve independently of offspring size?. Evolution 55(6), 1245–1248 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    McGinty, N. et al. Anthropogenic climate change impacts on copepod trait biogeography. Glob. Change Biol. 27, 1431–1442 (2021).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Ianora, A., Miralto, A. & Halsband-Lenk, C. Reproduction, hatching success, and early naupliar survival in Centropages typicus. Prog. Oceanogr. 72, 195–213 (2007).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Uye, S. & Sano, K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118, 121–128 (1995).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Guisande, C., Sanchez, J., Maneiro, I. & Miranda, A. Trade-off between offspring number and offspring size in the marine copepod Euterpina acutifrons at different food concentrations. Mar. Ecol. Prog. Ser. 143, 37–44 (1996).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Liang, D. & Uye, S. Seasonal reproductive biology of the egg-carrying calanoid copepod Pseudocalanus marinus in a eutrophic inlet of the Inland Sea of Japan. Mar. Biol. 128, 409–414 (1997).

    Article 

    Google Scholar 

  • 16.

    Hämäläinen, A. et al. Fitness consequences of peak reproductive effort in a resource pulse system. Sci. Rep. 7, 9335 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Souissi, S. & Souissi, A. Promotion of the development of sentinel species in the water column: Example using body size and fecundity of the egg-bearing calanoid copepod Eurytemora affinis. Water 13, 1442. https://doi.org/10.3390/w13111442 (2021).

    Article 

    Google Scholar 

  • 18.

    Madhupratap, M., Nehring, S. & Lenz, J. Resting eggs of zooplankton (Copepoda and Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Mar. Biol. 125, 77–87 (1996).

    Article 

    Google Scholar 

  • 19.

    Katajisto, T., Viitasalo, M. & Koski, M. Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar. Ecol. Prog. Ser. 163, 133–143 (1998).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Walsh, M. R. The link between environmental variation and evolutionary shifts in dormancy in zooplankton. Integr. Comp. Biol. 53(4), 713–722 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Glippa, O., Denis, L., Lesourd, S. & Souissi, S. Seasonal fluctuations of the copepod resting egg bank in the middle Seine estuary, France: Impact on the nauplii recruitment. Estuar. Coast. Shelf Sci. 142, 60–67 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Jamieson, C. D. & Santer, B. Maternal aging in the univoltine freshwater copepod Cyclops kolensis: variation in egg sizes, egg development times, and naupliar development times. Hydrobiologia 510, 75–81 (2003).

    Article 

    Google Scholar 

  • 23.

    Kiørboe, T. & Sabatini, M. Reproduction and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16(10), 1353–1366 (1994).

    Article 

    Google Scholar 

  • 24.

    Hirst, A. G. & Kiørboe, T. Mortality of marine planktonic copepods: global rates and patterns. Mar. Ecol. Prog. Ser. 230, 195–209 (2002).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Andersen, M. C. & Nielson, T. G. Hatching rate of the egg carrying estuarine copepod Eurytemora affinis. Mar. Ecol. Prog. Ser. 160, 283–289 (1997).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Winkler, G., Dodson, J. J. & Lee, C. E. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Mol. Ecol. 17, 415–430 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Devreker, D. et al. Tidal and annual variability of the population structure of Eurytemora affinis in the middle part of the Seine Estuary during 2005. Estuar. Coast. Shelf Sci. 89, 245–255 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Ban, S. Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J. Plankton Res. 16, 721–735 (1994).

    Article 

    Google Scholar 

  • 29.

    Devreker, D., Souissi, S., Winkler, G., Forget-Leray, J. & Leboulenger, F. Effects of salinity and temperature on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J. Exp. Mar. Biol. Ecol. 368, 113–123 (2009).

    Article 

    Google Scholar 

  • 30.

    Dur, G. et al. An individual based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecol. Model. 220, 1073–1089 (2009).

    Article 

    Google Scholar 

  • 31.

    Michalec, F.-G. et al. Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J. Plankton Res. 32(6), 805–813 (2010).

    Article 

    Google Scholar 

  • 32.

    Michalec, F.-G., Holzner, M., Menu, D., Hwang, J.-S. & Souissi, S. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants. Aquat. Toxicol. 138–139, 129–138 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 33.

    Souissi, A., Souissi, S. & Hwang, J.-S. Evaluation of the copepod Eurytemora affinis life history response to temperature and salinity increases. Zool. Stud. 55, e4. https://doi.org/10.6620/ZS.2016.55-04 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Souissi, A., Souissi, S. & Hansen, B. W. Physiological improvement in the copepod Eurytemora affinis through thermal and multigenerational selection. Aquac. Res. 47, 2227–2242 (2016).

    Article 

    Google Scholar 

  • 36.

    Souissi, A., Souissi, S., Devreker, D. & Hwang, J.-S. Occurence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France). Mar. Biol. 157, 851–861 (2010).

    Article 

    Google Scholar 

  • 37.

    Heinle, D. R. & Flemer, D. A. Carbon requirements of a population of the estuarine copepod Eurytemora affinis. Mar. Biol. 31, 235–247 (1975).

    Article 

    Google Scholar 

  • 38.

    Hirche, H.-J. Egg production of Eurytemora affinis—effect of K-strategy. Estuar. Coast. Shelf Sci. 35, 395–407 (1992).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Crawford, P. & Daborn, G. R. Seasonal variations in body size and fecundity in a copepod of turbid estuaries. Estuaries 9(2), 133–141 (1986).

    Article 

    Google Scholar 

  • 40.

    IPCC Climate change The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 2007 (Cambridge University Press, 2007).

    Google Scholar 

  • 41.

    Guisande, C. & Gliwicz, Z. M. Egg size and clutch size in 2 Daphnia species grown at different food levels. J. Plankton Res. 14, 997–1007 (1992).

    Article 

    Google Scholar 

  • 42.

    Carrière, Y. & Roff, D. A. The evolution of offspring size and number: a test of the Smith-Fretwell model in three species of crickets. Oecologia 102, 389–396 (1995).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Beyrend-Dur, D., Souissi, S., Devreker, D., Winklerd, G. & Hwang, J.-S. Life cycle traits of two transatlantic populations of Eurytemora affinis (Copepoda: Calanoida): Salinity effects. J. Plankton Res. 31(7), 713–728 (2009).

    Article 

    Google Scholar 

  • 44.

    Dur, G. & Souissi, S. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France). Est. Coast Shelf Sci. 200, 311–323 (2018).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Mouny, P. & Dauvin, J. C. Environmental control of mesozooplankton communities in the Seine estuary (English Channel). Oceanol. Acta 25, 13–22 (2002).

    Article 

    Google Scholar 

  • 46.

    Mouny, P., Dauvin, J. C., Bessineton, C., Elkaim, B. & Simon, S. Biological components from the Seine estuary: first results. Hydrobiologia 373(374), 333–347 (1998).

    Article 

    Google Scholar 

  • 47.

    Dur, G., Jimenez-Melero, R., Beyrend-Dur, D., Hwang, J.-S. & Souissi, S. Individual-based model of the phenology of egg-bearing copepods application to Eurytemora affinis from the Seine estuary, France. Ecol. Model. 269, 21–36 (2013).

    Article 

    Google Scholar 

  • 48.

    Cailleaud, K. et al. Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonylphenols. Aquat. Tox. 112, 228–231 (2011).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Mahjoub, M.-S., Souissi, S., Michalec, F.-G., Schmitt, F. G. & Hwang, J.-S. Swimming kinematics of Eurytemora affinis (Copepoda, Calanoida) reproductive stages and differential vulnerability to predation of larval Dicentrarchus labrax (Teleostei, Perciformes). J. Plankton Res. 33(7), 1095–1103 (2011).

    Article 

    Google Scholar 

  • 50.

    Lee, C. E. Rapid and repeated invasion of freshwater by the copepod Eurytemora affinis. Evolution 53(5), 1423–1434 (1999).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Inter-species interactions alter antibiotic efficacy in bacterial communities

    First report of an egg-predator nemertean worm in crabs from the south-eastern Pacific coast: Carcinonemertes camanchaco sp. nov