Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).
Churchill, E. R., Dytham, C. & Thom, M. D. F. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci. Rep. 9, 2167. https://doi.org/10.1038/s41598-019-38843-w (2019).
Google Scholar
Price, P. W. Strategies for egg production. Evolution 28(1), 76–84 (1974).
Google Scholar
Roff, D. A. The Evolution of Life Histories. Theory and analysis (Chapman and Hall, 1992).
Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108(962), 499–506 (1974).
Google Scholar
Durrant, K. et al. Comparative morphological trade-offs between pre- and post-copulatory sexual selection in Giant hissing cockroaches (Tribe: Gromphadorhini). Sci. Rep. 6, 36755. https://doi.org/10.1038/srep36755 (2016).
Google Scholar
Timi, J. T., Lanfranchi, A. L. & Poulin, R. Is there a trade-off between fecundity and egg volume in the parasitic copepod Lernanthropus cynoscicola?. Parasitol. Res. 95, 1–4 (2005).
Google Scholar
Cavaleiro, F. I. & Santos, M. J. Egg number–egg size: An important trade-off in parasite life history strategies. Int. J. Parasitol. 44, 173–182 (2014).
Google Scholar
Poulin, R. Clutch size and egg size in free-living and parasitic copepods: A comparative analysis. Evolution 49(2), 325–336 (1995).
Google Scholar
Caley, M. J., Schwarzkoff, L. & Shine, R. Does total reproductive effort evolve independently of offspring size?. Evolution 55(6), 1245–1248 (2001).
Google Scholar
McGinty, N. et al. Anthropogenic climate change impacts on copepod trait biogeography. Glob. Change Biol. 27, 1431–1442 (2021).
Google Scholar
Ianora, A., Miralto, A. & Halsband-Lenk, C. Reproduction, hatching success, and early naupliar survival in Centropages typicus. Prog. Oceanogr. 72, 195–213 (2007).
Google Scholar
Uye, S. & Sano, K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118, 121–128 (1995).
Google Scholar
Guisande, C., Sanchez, J., Maneiro, I. & Miranda, A. Trade-off between offspring number and offspring size in the marine copepod Euterpina acutifrons at different food concentrations. Mar. Ecol. Prog. Ser. 143, 37–44 (1996).
Google Scholar
Liang, D. & Uye, S. Seasonal reproductive biology of the egg-carrying calanoid copepod Pseudocalanus marinus in a eutrophic inlet of the Inland Sea of Japan. Mar. Biol. 128, 409–414 (1997).
Google Scholar
Hämäläinen, A. et al. Fitness consequences of peak reproductive effort in a resource pulse system. Sci. Rep. 7, 9335 (2017).
Google Scholar
Souissi, S. & Souissi, A. Promotion of the development of sentinel species in the water column: Example using body size and fecundity of the egg-bearing calanoid copepod Eurytemora affinis. Water 13, 1442. https://doi.org/10.3390/w13111442 (2021).
Google Scholar
Madhupratap, M., Nehring, S. & Lenz, J. Resting eggs of zooplankton (Copepoda and Cladocera) from the Kiel Bay and adjacent waters (southwestern Baltic). Mar. Biol. 125, 77–87 (1996).
Google Scholar
Katajisto, T., Viitasalo, M. & Koski, M. Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar. Ecol. Prog. Ser. 163, 133–143 (1998).
Google Scholar
Walsh, M. R. The link between environmental variation and evolutionary shifts in dormancy in zooplankton. Integr. Comp. Biol. 53(4), 713–722 (2013).
Google Scholar
Glippa, O., Denis, L., Lesourd, S. & Souissi, S. Seasonal fluctuations of the copepod resting egg bank in the middle Seine estuary, France: Impact on the nauplii recruitment. Estuar. Coast. Shelf Sci. 142, 60–67 (2014).
Google Scholar
Jamieson, C. D. & Santer, B. Maternal aging in the univoltine freshwater copepod Cyclops kolensis: variation in egg sizes, egg development times, and naupliar development times. Hydrobiologia 510, 75–81 (2003).
Google Scholar
Kiørboe, T. & Sabatini, M. Reproduction and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16(10), 1353–1366 (1994).
Google Scholar
Hirst, A. G. & Kiørboe, T. Mortality of marine planktonic copepods: global rates and patterns. Mar. Ecol. Prog. Ser. 230, 195–209 (2002).
Google Scholar
Andersen, M. C. & Nielson, T. G. Hatching rate of the egg carrying estuarine copepod Eurytemora affinis. Mar. Ecol. Prog. Ser. 160, 283–289 (1997).
Google Scholar
Winkler, G., Dodson, J. J. & Lee, C. E. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Mol. Ecol. 17, 415–430 (2008).
Google Scholar
Devreker, D. et al. Tidal and annual variability of the population structure of Eurytemora affinis in the middle part of the Seine Estuary during 2005. Estuar. Coast. Shelf Sci. 89, 245–255 (2010).
Google Scholar
Ban, S. Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis. J. Plankton Res. 16, 721–735 (1994).
Google Scholar
Devreker, D., Souissi, S., Winkler, G., Forget-Leray, J. & Leboulenger, F. Effects of salinity and temperature on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J. Exp. Mar. Biol. Ecol. 368, 113–123 (2009).
Google Scholar
Dur, G. et al. An individual based model to study the reproduction of egg bearing copepods: application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France. Ecol. Model. 220, 1073–1089 (2009).
Google Scholar
Michalec, F.-G. et al. Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J. Plankton Res. 32(6), 805–813 (2010).
Google Scholar
Michalec, F.-G., Holzner, M., Menu, D., Hwang, J.-S. & Souissi, S. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants. Aquat. Toxicol. 138–139, 129–138 (2013).
Google Scholar
Souissi, A., Souissi, S. & Hwang, J.-S. Evaluation of the copepod Eurytemora affinis life history response to temperature and salinity increases. Zool. Stud. 55, e4. https://doi.org/10.6620/ZS.2016.55-04 (2016).
Google Scholar
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Google Scholar
Souissi, A., Souissi, S. & Hansen, B. W. Physiological improvement in the copepod Eurytemora affinis through thermal and multigenerational selection. Aquac. Res. 47, 2227–2242 (2016).
Google Scholar
Souissi, A., Souissi, S., Devreker, D. & Hwang, J.-S. Occurence of intersexuality in a laboratory culture of the copepod Eurytemora affinis from the Seine estuary (France). Mar. Biol. 157, 851–861 (2010).
Google Scholar
Heinle, D. R. & Flemer, D. A. Carbon requirements of a population of the estuarine copepod Eurytemora affinis. Mar. Biol. 31, 235–247 (1975).
Google Scholar
Hirche, H.-J. Egg production of Eurytemora affinis—effect of K-strategy. Estuar. Coast. Shelf Sci. 35, 395–407 (1992).
Google Scholar
Crawford, P. & Daborn, G. R. Seasonal variations in body size and fecundity in a copepod of turbid estuaries. Estuaries 9(2), 133–141 (1986).
Google Scholar
IPCC Climate change The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 2007 (Cambridge University Press, 2007).
Guisande, C. & Gliwicz, Z. M. Egg size and clutch size in 2 Daphnia species grown at different food levels. J. Plankton Res. 14, 997–1007 (1992).
Google Scholar
Carrière, Y. & Roff, D. A. The evolution of offspring size and number: a test of the Smith-Fretwell model in three species of crickets. Oecologia 102, 389–396 (1995).
Google Scholar
Beyrend-Dur, D., Souissi, S., Devreker, D., Winklerd, G. & Hwang, J.-S. Life cycle traits of two transatlantic populations of Eurytemora affinis (Copepoda: Calanoida): Salinity effects. J. Plankton Res. 31(7), 713–728 (2009).
Google Scholar
Dur, G. & Souissi, S. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France). Est. Coast Shelf Sci. 200, 311–323 (2018).
Google Scholar
Mouny, P. & Dauvin, J. C. Environmental control of mesozooplankton communities in the Seine estuary (English Channel). Oceanol. Acta 25, 13–22 (2002).
Google Scholar
Mouny, P., Dauvin, J. C., Bessineton, C., Elkaim, B. & Simon, S. Biological components from the Seine estuary: first results. Hydrobiologia 373(374), 333–347 (1998).
Google Scholar
Dur, G., Jimenez-Melero, R., Beyrend-Dur, D., Hwang, J.-S. & Souissi, S. Individual-based model of the phenology of egg-bearing copepods application to Eurytemora affinis from the Seine estuary, France. Ecol. Model. 269, 21–36 (2013).
Google Scholar
Cailleaud, K. et al. Changes in the swimming behavior of Eurytemora affinis (Copepoda, Calanoida) in response to a sub-lethal exposure to nonylphenols. Aquat. Tox. 112, 228–231 (2011).
Google Scholar
Mahjoub, M.-S., Souissi, S., Michalec, F.-G., Schmitt, F. G. & Hwang, J.-S. Swimming kinematics of Eurytemora affinis (Copepoda, Calanoida) reproductive stages and differential vulnerability to predation of larval Dicentrarchus labrax (Teleostei, Perciformes). J. Plankton Res. 33(7), 1095–1103 (2011).
Google Scholar
Lee, C. E. Rapid and repeated invasion of freshwater by the copepod Eurytemora affinis. Evolution 53(5), 1423–1434 (1999).
Google Scholar
Source: Ecology - nature.com