in

Carbon dioxide levels in initial nests of the leaf-cutting ant Atta sexdens (Hymenoptera: Formicidae)

  • 1.

    Hughes, W. O. H. & Goulson, D. The use of alarm pheromones to enhance bait harvest by grass-cutting ants. Bull. Entomol. Res. 92, 213–218 (2002).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Staab, M. & Kleineidam, C. J. Initiation of swarming behavior and synchronization of mating flights in the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hymenoptera: Formicidae). Myrmecol. News 19, 93–102 (2014).

    Google Scholar 

  • 3.

    Sales, T. A., Toledo, A. M. O. & Lopes, J. F. S. The best of heavy queens: Influence of post-flight weight on queens’ survival and productivity in Acromyrmex subterraneus (Forel, 1893) (Hymenoptera: Formicidae). Insectes Soc. 67, 383–390 (2020).

    Article 

    Google Scholar 

  • 4.

    Camargo, R. S., Forti, L. C., Fujihara, R. T. & Roces, F. Digging effort in leaf-cutting ant queens (Atta sexdens rubropilosa) and its effects on survival and colony growth during the claustral phase. Insectes Soc. 58, 17–22 (2011).

    Article 

    Google Scholar 

  • 5.

    Autuori, M. Contribuição para o conhecimento da saúva (Atta spp.) (Hymenoptera: Formicidae). I. Evolução do sauveiro (Atta sexdens rubropilosa Forel, 1908). Arq. Inst. Biol. 12, 197–228 (1941).

    Google Scholar 

  • 6.

    Aylward, F. O. et al. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl. Environ. Microbiol. 79, 3770–3778 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Costa, A. N., Vasconcelos, H. L., Vieira-Neto, E. H. M. & Bruna, E. M. Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutter ants. J. Veg. Sci. 19, 849–854 (2008).

    Article 

    Google Scholar 

  • 8.

    Bollazzi, M., Forti, L. C. & Roces, F. Ventilation of the giant nests of Atta leaf-cutting ants: Does underground circulating air enter the fungus chambers?. Insectes Soc. 59, 487–498 (2012).

    Article 

    Google Scholar 

  • 9.

    Sousa-Souto, L. et al. Increased CO2 emission and organic matter decomposition by leaf-cutting ant nests in a coastal environment. Soil Biol. Biochem. 44, 21–25 (2012).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Hasin, S. et al. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand. Ecol. Evol. 4, 3929–3939 (2014).

    Article 

    Google Scholar 

  • 11.

    Tschinkel, W. R. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4, 21 (2004).

    Article 

    Google Scholar 

  • 12.

    Kleineidam, C. & Roces, F. Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insectes Soc. 47, 241–248 (2000).

    Article 

    Google Scholar 

  • 13.

    Currie, J. A. Gas diffusion through soil crumbs: The effects of compaction and wetting. J. Soil Sci. 35, 1–10 (1984).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Kleineidam, C., Ernst, R. & Roces, F. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Naturwissenschaften 88, 301–305 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Vogel, S., Ellington, C. P. & Kilgore, D. L. Wind-induced ventilation of the burrow of the prairie-dog, Cynomys ludovicianus. J. Comp. Physiol. 85, 1–14 (1973).

    Article 

    Google Scholar 

  • 16.

    Jonkman, J. C. M. The external and internal structure and growth of nests of the leaf-cutting ant Atta vollenweideri Forel, 1893 (Hym: Formicidae) Part II. Zeitschrift für Angew. Entomol. 89, 158–173 (1980).

    Article 

    Google Scholar 

  • 17.

    Gutiérrez, J. L. & Jones, C. G. Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56, 227–236 (2006).

    Article 

    Google Scholar 

  • 18.

    Fernandez-Bou, A. S. et al. The role of the ecosystem engineer, the leaf-cutter ant Atta cephalotes, on soil CO2 dynamics in a wet tropical rainforest. J. Geophys. Res. Biogeosciences 124, 260–273 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Moitinho, M. R. et al. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota?. J. Environ. Manag. 11, 1–15 (2021).

    Google Scholar 

  • 20.

    Roces, F. Variable thermal sensitivity as output of a circadian clock controlling the bimodal rhythm of temperature choice in the ant Camponotus mus. J. Comp. Physiol. A 177, 637–643 (1995).

    Article 

    Google Scholar 

  • 21.

    Römer, D., Bollazzi, M. & Roces, F. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus. PLoS ONE 12, e0174597 (2017).

    Article 

    Google Scholar 

  • 22.

    Halboth, F. & Roces, F. The construction of ventilation turrets in Atta vollenweideri leaf-cutting ants: Carbon dioxide levels in the nest tunnels, but not airflow or air humidity, influence turret structure. PLoS ONE 12, e0188162 (2017).

    Article 

    Google Scholar 

  • 23.

    Kleineidam, C. & Tautz, J. Perception of carbon dioxide and other “air-condition” parameters in the leaf cutting ant Atta cephalotes. Naturwissenschaften 83, 566–568 (1996).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Kleineidam, C., Romani, R., Tautz, J. & Isidoro, N. Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. Arthropod Struct. Dev. 29, 43–55 (2000).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Camargo, R. S. & Forti, L. C. Queen lipid content and nest growth in the leaf cutting ant (Atta sexdens rubropilosa) (Hymenoptera: Formicidae). J. Nat. Hist. 47, 65–73 (2013).

    Article 

    Google Scholar 

  • 26.

    Seal, J. N. Scaling of body weight and fat content in fungus-gardening ant queens: Does this explain why leaf-cutting ants found claustrally?. Insectes Soc. 56, 135–141 (2009).

    Article 

    Google Scholar 

  • 27.

    Camargo, R. D. S., Fonseca, J. A., Lopes, J. F. S. & Forti, L. C. Influência do ambiente no desenvolvimento de colônias iniciais de formigas cortadeiras (Atta sexdens rubropilosa). Ciência Rural 43, 1375–1380 (2013).

    Article 

    Google Scholar 

  • 28.

    Silva, E. J., da Silva Camargo, R. & Forti, L. C. Flight and digging effort in leaf-cutting ant males and gynes. Sociobiology 62, 334–339 (2015).

    Article 

    Google Scholar 

  • 29.

    Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 38, 425–448 (2006).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Camargo, R. S., Silva, E. J., Forti, L. C. & Matos, C. A. O. Initial development and production of CO2 in colonies of the leaf-cutting ant Atta sexdens during the claustral foundation. Sociobiology 63, 720–723 (2016).

    Article 

    Google Scholar 

  • 31.

    Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw. 34, 1–24 (2010).

    Article 

    Google Scholar 

  • 32.

    Ferrari, S. & Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 31, 799–815 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • 33.

    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54 (2006).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Soil organic matter and clay zeta potential influence aggregation of a clayey red soil (Ultisol) under long-term fertilization

    How marsh grass protects shorelines