in

Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale

  • 1.

    Fahad, S. et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 8, 1147 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Engelbrecht, B. M., Kursar, T. A. & Tyree, M. T. Drought effects on seedling survival in a tropical moist forest. Trees 19, 312–321 (2005).

    Article 

    Google Scholar 

  • 3.

    Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Change Biol. 17, 2084–2094 (2011).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Clim. Change 75, 273–299 (2006).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).

    Article 

    Google Scholar 

  • 6.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

  • 7.

    Nayyar, H., Kaur, S., Singh, S. & Upadhyaya, H. D. Differential sensitivity of Desi (small-seeded) and Kabuli (large-seeded) chickpea genotypes to water stress during seed filling: Effects on accumulation of seed reserves and yield. J. Sci. Food Agric. 86, 2076–2082 (2006).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Bodner, G., Nakhforoosh, A. & Kaul, H.-P. Management of crop water under drought: A review. Agron. Sustain. Dev. 35, 401–442 (2015).

    Article 

    Google Scholar 

  • 9.

    Osakabe, Y., Osakabe, K., Shinozaki, K. & Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 5, 86 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Anjum, S. A. et al. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6, 2026–2032 (2011).

    Google Scholar 

  • 11.

    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. Sustainable Agriculture 153–188 (Springer, Berlin, 2009).

    Book 

    Google Scholar 

  • 12.

    Schneider, F. & Don, A. Root-restricting layers in German agricultural soils. Part I: extent and cause. Plant Soil 442, 433–451 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Basu, S., Ramegowda, V., Kumar, A. & Pereira, A. Plant adaptation to drought stress. F1000Research 5 (2016).

  • 15.

    Coskun, D., Britto, D. T., Huynh, W. Q. & Kronzucker, H. J. The role of silicon in higher plants under salinity and drought stress. Front. Plant Sci. 7, 1072 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R. & Sommer, M. Silicon cycling in soils revisited. Plants 10, 295 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U. S. A. 91, 11–17 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Ma, J. F. & Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11, 392–397 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Gong, H. J., Chen, K. M., Chen, G. C., Wang, S. M. & Zhang, C. L. Effects of silicon on growth of wheat under drought. J. Plant Nutr. 26, 1055–1063 (2003).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Hattori, T. et al. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 123, 459–466 (2005).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Chen, W., Yao, X., Cai, K. & Chen, J. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 142, 67–76 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Ibrahim, M. A., Merwad, A.-R.M. & Elnaka, E. A. Rice (Oryza Sativa L.) tolerance to drought can be improved by silicon application. Commun. Soil Sci. Plant Anal. 49, 945–957 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Alzahrani, Y., Kuşvuran, A., Alharby, H. F., Kuşvuran, S. & Rady, M. M. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotox. Environ. Safe. 154, 187–196 (2018).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Meunier, J. D. et al. Effect of phytoliths for mitigating water stress in durum wheat. New Phytol. 215, 229–239 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Schaller, J., Cramer, A., Carminati, A. & Zarebanadkouki, M. Biogenic amorphous silica as main driver for plant available water in soils. Sci. Rep. 10, 2424 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Schaller, J., Frei, S., Rohn, L. & Gilfedder, B. S. Amorphous silica controls water storage capacity and phosphorus mobility in soils. Front. Environ. Sci. 8, 94 (2020).

    Article 

    Google Scholar 

  • 27.

    Neu, S., Schaller, J. & Dudel, E. G. Silicon availability modifies nutrient use efficiency and content, C:N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci. Rep. 7, 40829 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Schaller, J. et al. Silicon increases the phosphorus availability of Arctic soils. Sci. Rep. 9, 449 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Munné-Bosch, S. & Alegre, L. Die and let live: Leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 31, 203–216 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Joshi, S. et al. Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front. Plant Sci. 10, 1285 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Rivero, R. M. et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. 104, 19631–19636 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Chapman, E. A., Orford, S., Lage, J. & Griffiths, S. Capturing and selecting senescence variation in wheat. Front. Plant Sci. 12, 638738 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Camp, P. J., Huber, S. C., Burke, J. J. & Moreland, D. E. Biochemical changes that occur during senescence of wheat leaves: I. Basis for the reduction of photosynthesis. Plant Physiol. 70, 1641–1646 (1982).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Lopes, M. S. & Reynolds, M. P. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 63, 3789–3798 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Rodriguez, D. et al. Modelling the response of wheat canopy assimilation to atmospheric CO2 concentrations. New Phytol. 150, 337–346 (2001).

    Article 

    Google Scholar 

  • 36.

    Moureaux, C. et al. Carbon balance assessment of a Belgian winter wheat crop (Triticum aestivum L.). Glob. Change Biol. 14, 1353–1366 (2008).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Gao, X. P., Zou, C. Q., Wang, L. J. & Zhang, F. S. Silicon improves water use efficiency in maize plants. J. Plant Nutr. 27, 1457–1470 (2004).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Agarie, S., Uchida, H., Agata, W., Kubota, F. & Kaufman, P. B. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod. Sci. 1, 89–95 (1998).

    Article 

    Google Scholar 

  • 39.

    Dakora, F. D. & Nelwamondo, A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Funct. Plant Biol. 30, 947–953 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Steudle, E. & Peterson, C. A. How does water get through roots?. J. Exp. Bot. 49, 775–788 (1998).

    CAS 

    Google Scholar 

  • 41.

    Gao, X., Zou, C., Wang, L. & Zhang, F. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 29, 1637–1647 (2006).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Vandegeer, R. K. et al. Silicon deposition on guard cells increases stomatal sensitivity as mediated by K+ efflux and consequently reduces stomatal conductance. Physiol. Plant. 171, 358–370 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Flexas, J. & Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Kuhla, J., Pausch, J. & Schaller, J. Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought. Plant Cell Environ. (2020).

  • 45.

    Schaller, J. et al. Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant Soil 444, 399–407 (2019).

    CAS 
    Article 

    Google Scholar 

  • 46.

    IUSS_Working_Group_Wrb. (Food and Agriculture Organization of the United Nations Rome, 2015).

  • 47.

    Schüller, H. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z. Pflanzenernähr. Bodenkd. 123, 48–63 (1969).

    Article 

    Google Scholar 

  • 48.

    Huth, V. et al. Divergent NEE balances from manual-chamber CO2 fluxes linked to different measurement and gap-filling strategies: A source for uncertainty of estimated terrestrial C sources and sinks?. J. Plant Nutr. Soil Sci. 180, 302–315 (2017).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Livingston, G. & Hutchinson, G. Enclosure-based measurement of trace gas exchange: applications and sources of error. Biog. Trace Gases Meas. Emiss. Soil Water 51, 14–51 (1995).

    Google Scholar 

  • 50.

    Hoffmann, M. et al. Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks: A comparison between automatic chamber-derived C budgets and repeated soil inventories. Biogeosciences 14, 1003–1019 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    Davidson, E., Savage, K., Verchot, L. & Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 113, 21–37 (2002).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Kutzbach, L. et al. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4, 1005–1025 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Langensiepen, M., Kupisch, M., van Wijk, M. T. & Ewert, F. Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing. Agric. For. Meteorol. 164, 61–70 (2012).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Webb, E. K., Pearman, G. I. & Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 106, 85–100 (1980).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Leiber-Sauheitl, K., Fuß, R., Voigt, C. & Freibauer, A. High greenhouse gas fluxes from grassland on histic gleysol along soil carbon and drainage gradients. Biogeosci. Discuss. 10 (2013).

  • 56.

    Adamsen, F. et al. Measuring wheat senescence with a digital camera. Crop Sci. 39, 719–724 (1999).

    Article 

    Google Scholar 

  • 57.

    Idso, S., Pinter, P. Jr., Jackson, R. & Reginato, R. Estimation of grain yields by remote sensing of crop senescence rates. Remote Sens. Environ. 9, 87–91 (1980).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Kandel, T. P., Elsgaard, L. & Lærke, P. E. Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley. Gcb Bioenergy 5, 548–561 (2013).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Görres, C.-M., Kutzbach, L. & Elsgaard, L. Comparative modeling of annual CO2 flux of temperate peat soils under permanent grassland management. Agr. Ecosyst. Environ. 186, 64–76 (2014).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    How diet affects tumors

    Coupling power and hydrogen sector pathways to benefit decarbonization