Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).
Google Scholar
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. (2020).
Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).
Google Scholar
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).
Google Scholar
Le Roux, J. J. et al. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr. Biol. 29, 2912-2918.e2 (2019).
Google Scholar
Hulme, P. E. et al. Greater focus needed on alien plant impacts in protected areas. Conserv. Lett. 7, 459–466 (2014).
Google Scholar
Foxcroft, L. C., Pyšek, P., Richardson, D. M., Genovesi, P. & MacFadyen, S. Plant invasion science in protected areas: progress and priorities. Biol. Invasions 19, 1353–1378 (2017).
Google Scholar
Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).
Google Scholar
Foxcroft, L. C., Pickett, S. T. A. & Cadenasso, M. L. Expanding the conceptual frameworks of plant invasion ecology. Perspect. Plant Ecol. Evol. Syst. 13, 89–100 (2011).
Google Scholar
Scholes, R. J. & Archer, S. R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).
Google Scholar
Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis (Island Press, 2005).
Foxcroft, L. C., Richardson, D. M., Rejmánek, M. & Pyšek, P. Alien plant invasions in tropical and sub-tropical savannas: Patterns, processes and prospects. Biol. Invasions 12, 3913–3933 (2010).
Google Scholar
Rejmánek, M., Huntley, B. J., Le Roux, J. J. & Richardson, D. M. A rapid survey of the invasive plant species in western Angola. Afr. J. Ecol. 55, 56–69 (2017).
Google Scholar
Shackleton, R. T., Foxcroft, L. C., Pyšek, P., Wood, L. E. & Richardson, D. M. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 243, 108424 (2020).
Google Scholar
Skarpe, C. Dynamics of savanna ecosystems. J. Veg. Sci. 3, 293–300 (1992).
Google Scholar
Okin, G. S. et al. Spatial patterns of soil nutrients in two southern African savannas. J. Geophys. Res. Biogeosci. 113, G2 (2008).
Google Scholar
Ridolfi, L., Laio, F. & D’Odorico, P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 13, 5 (2008).
Google Scholar
Perroni-Ventura, Y., Montaña, C. & Garcí-a-Oliva, F. Carbon-nitrogen interactions in fertility island soil from a tropical semi-arid ecosystem. Funct. Ecol. 24, 233–242 (2010).
Google Scholar
Belnap, J. & Susan, L. P. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 51, 1261–1275. (2001).
Google Scholar
Ludwig, F., Kroon, H., Prins, H. H. T. & Berendse, F. Effects of nutrients and shade on tree-grass interactions in an East African savanna. J. Veg. Sci. 12, 579–588 (2001).
Google Scholar
Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).
Google Scholar
Weidenhamer, J. D. & Callaway, R. M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 36, 59–69 (2010).
Google Scholar
Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G. & Lambers, J. H. R. Plant-soil feedbacks and invasive spread. Ecol. Lett. 9, 1005–1014 (2006).
Google Scholar
du Toit, J. T., Rogers, K. H. & Biggs, H. C. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. (Island Press, 2003).
Foxcroft, L. C., Van Wilgen, N. J., Baard, J. A. & Cole, N. S. Biological invasions in South African National Parks. Bothalia 47, 11 (2017).
Google Scholar
Pyšek, P. et al. Into the great wide open: do alien plants spread from rivers to dry savanna in the Kruger National Park?. NeoBiota 60, 61–77 (2020).
Google Scholar
Kueffer, C., Pyšek, P. & Richardson, D. M. Integrative invasion science: Model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol. 200, 615–633 (2013).
Google Scholar
Lotter, W. D. & Hoffmann, J. H. An integrated management plan for the control of Opuntia stricta (Cactaceae) in the Kruger National Park, South Africa. Koedoe 41, 63–68 (1998).
Google Scholar
Hoffmann, J. H., Moran, V. C., Zimmermann, H. G. & Impson, F. A. C. Biocontrol of a prickly pear cactus in South Africa: Reinterpreting the analogous, renowned case in Australia. J. Appl. Ecol. 13737, 1365–2664. (2020).
Foxcroft, L. C., Rouget, M., Richardson, D. M. & MacFadyen, S. Reconstructing 50 years of Opuntia stricta invasion in the Kruger National Park, South Africa: Environmental determinants and propagule pressure. Divers. Distrib. 10, 427–437 (2004).
Google Scholar
Novoa, A., Le Roux, J. J., Robertson, M. P., Wilson, J. R. U. & Richardson, D. M. Introduced and invasive cactus species: A global review. AoB Plants 7, 1 (2015).
Google Scholar
Foxcroft, L. C., Hoffmann, J. H., Viljoen, J. J. & Kotze, J. J. Environmental factors influencing the distribution of Opuntia stricta, an invasive alien plant in the Kruger National Park, South Africa. S. Afr. J. Bot. 73, 109–112 (2007).
Google Scholar
Foxcroft, L. C. & Rejmánek, M. What helps Opuntia stricta invade Kruger National Park, South Africa: Baboons or elephants?. Appl. Veg. Sci. 10, 265–270 (2007).
Google Scholar
Anderson, E. F. The Cactus Family. (Timber Press, 2001).
Reyes-Agüero, J. A., Aguirre, R. J. R. & Valiente-Banuet, A. Reproductive biology of Opuntia: A review. J. Arid Environ. 64, 549–585 (2006).
Google Scholar
Robertson, M. P. et al. Assessing local scale impacts of Opuntia stricta (Cactaceae) invasion on beetle and spider diversity in Kruger National Park, South Africa. Afr. Zool. 46, 205–223 (2011).
Google Scholar
Butterfield, B. J. & Briggs, J. M. Patch dynamics of soil biotic feedbacks in the Sonoran Desert. J. Arid Environ. 73, 96–102 (2009).
Google Scholar
Neffar, S., Chenchouni, H., Beddiar, A. & Redjel, N. Rehabilitation of degraded rangeland in drylands by Prickly Pear (Opuntia ficus-indica L.) plantations: Effect on soil and spontaneous vegetation. Ecol. Balk. 5, 63–76 (2013).
Garner, W. & Steinberger, Y. A proposed mechanism for the formation of ‘Fertile Islands’ in the desert ecosystem. J. Arid Environ. 16, 257–262 (1989).
Google Scholar
Marchante, H., Elizabete M, & Helena, F. Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd.: effects at the community level. Plant invasions: ecological threats and management solutions. pp. 75–85 (2003).
Marchante, E. et al. Short-and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 40(2), 210–217 (2008).
Google Scholar
Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).
Google Scholar
Werner, C. et al. High competitiveness of a resource demanding invasive acacia under low resource supply. Plant Ecol. 206(1), 83–96 (2010).
Google Scholar
Le Maitre, D. C. et al. Impacts of invasive Australian acacias: implications for management and restoration. Divers. Distrib. 17(5), 1015–1029 (2011).
Google Scholar
Bargali, K. & Bargali, S. S. Acacia nilotica: a multipurpose leguminous plant. Nat. Sci. 7, 11–19 (2009).
Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).
Google Scholar
Neilson, J. W. et al. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16, 553–566 (2012).
Google Scholar
de Vos, P. et al. The Firmicutes. Bergey’s Manual of Systematic Bacteriology. (Springer, 2009).
Brockett, B. F. T., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).
Google Scholar
Yang, Y., Dou, Y. & An, S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Sci. Total Environ. 626, 48–58 (2018).
Google Scholar
Rajaniemi, T. K. & Allison, V. J. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol. Biochem. 41, 102–109 (2009).
Google Scholar
Novoa, A., Rodríguez, R., Richardson, D. & González, L. Soil quality: A key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br. Biol. Invasions 16, 429–443 (2014).
Penfield, S. Seed dormancy and germination. Curr. Biol. 27, R874–R878 (2017).
Google Scholar
Tielbörger, K. & Prasse, R. Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos 118, 792–800 (2009).
Google Scholar
Renne, I. J. et al. Eavesdropping in plants: delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).
Google Scholar
Yannelli, F. A., Novoa, A., Lorenzo, P., Rodríguez, J. & Le Roux, J. J. No evidence for novel weapons: biochemical recognition modulates early ontogenetic processes in native species and invasive acacias. Biol. Invasions 22, 549–562 (2020).
Google Scholar
Al-Wakeel, S. A. M., Gabr, M. A., Hamid, A. A. & Abu-El-Soud, W. M. Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath. J. 19, 411 (2007).
Scholes, M. C., Scholes, R. J., Otter, L. B. & Woghiren, A. J. Biogeochemistry: The cycling of elements. in The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds. du Toit, J. T., Rogers, K. H. & Biggs, H. C.) 130–148 (Island Press, 2003).
Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).
Google Scholar
van Wyk, B. & van Wyk, P. Field Guide to Trees of Southern Africa. (Struik Nature, 2013).
Coates Palgrave, K. & Coates Palgrave, M. Palgrave’s Trees of Southern Africa. (Struik Publishers, 2002).
Novoa, A., Kumschick, S., Richardson, D. M., Rouget, M. & Wilson, J. R. U. Native range size and growth form in Cactaceae predict invasiveness and impact. NeoBiota 30, 75–90 (2016).
Google Scholar
Allen, S. E. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1989).
Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307 (1969).
Google Scholar
Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68–72 (1988).
Google Scholar
Allison, S. D. & Vitousek, P. M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36, 285–296 (2004).
German, D. P., Chacon, S. S. & Allison, S. D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92, 1471–1480 (2011).
Google Scholar
Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).
Google Scholar
Tringe, S. G. & Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008).
Google Scholar
Bukin, Y. S. et al. The effect of 16s rRNA region choice on bacterial community metabarcoding results. Sci. Data 6, 1–14 (2019).
Google Scholar
Chakravorty, S., Helb, D., Burday, M., Connell, N. & Alland, D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).
Google Scholar
Beckers, B. et al. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front. Microbiol. 7, 1–15 (2016).
Google Scholar
Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8, 1–15 (2017).
Google Scholar
Schloss, P. D., & Westcott, S. L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77(10), 3219–3226 (2011).
Google Scholar
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Google Scholar
McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
Google Scholar
Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).
Google Scholar
de Cárcer, D. A., Denman, S. E., McSweeney, C. & Morrison, M. Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77, 8795–8798 (2011).
Google Scholar
Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L. & Pellissier, F. Do germination indices adequately reflect allelochemical effects on the germination process?. J. Chem. Ecol. 23, 2445–2453 (1997).
Google Scholar
Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.3-3. (2016).
Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Google Scholar
Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).
Google Scholar
Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).
Google Scholar
Charney, N. & Record, S. vegetarian: Jost Diversity Measures for Community Data. R package version 1.2. (2012).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18 (2011).
Google Scholar
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
Google Scholar
Source: Ecology - nature.com