in

A new ant-butterfly symbiosis in the forest canopy fills an evolutionary gap

  • 1.

    Kronauer, D. J. C. & Pierce, N. E. Myrmecophiles. Curr. Biol. 21, R208-209 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Parker, J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol. News 22, 65–108 (2016).

    Google Scholar 

  • 3.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).

    Book 

    Google Scholar 

  • 4.

    Hughes, D. P., Pierce, N. E. & Boomsma, J. J. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23, 672–677 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Lachaud, J.-P., Lenoir, A. & Witte, V. Ants and their parasites. Psyche 2012, Article ID 342157; https://doi.org/10.1155/2012/342157 (2012).

  • 6.

    Wheeler, W. M. Ants, their Structure, Development and Behavior. (Columbia University Press, 1910).

    Google Scholar 

  • 7.

    Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).

    Google Scholar 

  • 8.

    Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication: An Interdisciplinary Perspective (eds d’Ettorre, P. & Hughes, D. P.) 55–79 (Oxford University Press, 2008).

    Chapter 

    Google Scholar 

  • 9.

    Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 266, 1419–1426 (1999).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Barbero, F., Thomas, J. A., Bonelli, S., Balletto, E. & Schönrogge, K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323, 782–785 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Kaminski, L. A., Volkmann, L., Callaghan, C. J., DeVries, P. J. & Vila, R. The first known riodinid ‘cuckoo’ butterfly reveals deep-time convergence and parallelism in ant social parasites. Zool. J. Linn. Soc. 192, 1–20. https://doi.org/10.1093/zoolinnean/zlaa150 (2021).

    Article 

    Google Scholar 

  • 12.

    Elmes, G. W., Barr, B., Thomas, J. A. & Clark, R. T. Extreme host specificity by Microdon mutabilis (Diptera, Syrphidae), a social parasite of ants. Proc. R. Soc. Lond. B 266, 447–453 (1999).

    Article 

    Google Scholar 

  • 13.

    Schönrogge, K. et al. Host propagation permits extreme local adaptation in a social parasite of ants. Ecol. Lett. 9, 1032–1040 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Bonelli, S. et al. Distribution, host specificity, and the potential for cryptic speciation in hoverfly Microdon myrmicae (Diptera: Syrphidae), a social parasite of Myrmica ants. Ecol. Entomol. 36, 135–143 (2011).

    Article 

    Google Scholar 

  • 15.

    Di Giulio, A. et al. The pied piper: A parasitic beetle’s melodies modulate ant behaviours. PLoS ONE 10, e0130541 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Van Oystaeyen, A. et al. Chemical strategies of the beetle Metoecus paradoxus, social parasite of the wasp Vespula vulgaris. J. Chem. Ecol. 41, 1137–1147 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Yamamoto, S., Maruyama, M. & Parker, J. Evidence for social parasitism of early insect societies by Cretaceaous rove beetles. Nat. Commun. 7, 13658 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Hinton, H.E. Myrmecophilous Lycaenidae and other Lepidoptera—A summary. Proc. Trans. South Lond. Entomol. Nat. Hist. Soc. 1949–1950, 111–175 (1951).

  • 19.

    Pierce, N. E. Predatory and parasitic Lepidoptera: Carnivores living on plants. J. Lepid. Soc. 49, 412–453 (1995).

    Google Scholar 

  • 20.

    Dejean, A. et al. Ant-lepidopteran associations along African forest edges. Sci. Nat. 104, 7 (2017).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Fiedler, K. Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonn. Zool. Monogr. 31, 1–210 (1991).

    Google Scholar 

  • 22.

    Pierce, N. E. et al. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu. Rev. Entomol. 47, 733–771 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    DeVries, P. J. Mutualism between Thisbe irenea butterflies and ants, and the role of ant ecology in the evolution of larval-ant associations. Biol. J. Linn. Soc. 43, 179–195 (1991).

    MathSciNet 
    Article 

    Google Scholar 

  • 24.

    DeVries, P. J. Evolutionary and ecological patterns in myrmecophilous riodinid butterflies. In Ant-Plant Interactions (eds Huxley, C. R. & Cutler, D. F.) 143–156 (Oxford University Press, 1991).

    Google Scholar 

  • 25.

    DeVries, P.J. Butterflies. Encyclopedia of Biodiversity 1, 559–573 (2001).

  • 26.

    Pierce, N. E. & Mead, P. S. Parasitoids as selective agents in the symbiosis between lycaenid butterfly larvae and ants. Science 211, 1185–1187 (1981).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Kaminski, L. A., Freitas, A. V. L. & Oliveira, P. S. Interaction between mutualisms: Ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am. Nat. 176, 322–334 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Balduf, W. V. The rise of entomophagy among Lepidoptera. Am. Nat. 72, 358–379 (1938).

    Article 

    Google Scholar 

  • 29.

    Cottrell, C. B. Aphytophagy in butterflies: Its relationship to myrmecophily. Zool. J. Linn. Soc. 79, 1–57 (1984).

    Article 

    Google Scholar 

  • 30.

    Fiedler, K. Lycaenid–ant interactions of the Maculinea type: Tracing their historical roots in a comparative framework. J. Insect Conserv. 2, 3–14 (1998).

    Article 

    Google Scholar 

  • 31.

    Kaliszewska, Z. A. et al. When caterpillars attack: Biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution 69, 571–588 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Sala, M., Casacci, L. P., Balleto, E., Bonelli, S. & Barbero, F. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS ONE 9, e94341 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).

    Article 

    Google Scholar 

  • 34.

    Casacci, L. P., Bonelli, S., Balleto, E. & Barbero, F. Multimodal signaling in myrmecophilous butterflies. Front. Ecol. Evol. 7, 454 (2019).

    Article 

    Google Scholar 

  • 35.

    Thomas, J. A., Elmes, G. W. & Wardlaw, J. C. Polymorphic growth in larvae of the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 265, 1895–1901 (1998).

    Article 

    Google Scholar 

  • 36.

    Espeland, M. et al. Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenet. Evol. 93, 296–306 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Seraphim, N. et al. Molecular phylogeny and higher systematics of the metalmark butterflies (Lepidoptera: Riodinidae). Syst. Entomol. 43, 407–425 (2018).

    Article 

    Google Scholar 

  • 38.

    Seraphim, N. Riodinidae Species Checklist: a preliminary species checklist for the Riodinidae (2019). Available at: https://www2.ib.unicamp.br/labor/site/?page_id=805.

  • 39.

    DeVries P.J. The butterflies of Costa Rica and their natural history. Vol II: Riodinidae. Princeton University Press (1997).

  • 40.

    Campbell, D. L., Brower, A. V. Z. & Pierce, N. E. Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea). Mol. Biol. Evol. 17, 684–696 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Mota, L. L., Kaminski, L. A. & Freitas, A. V. L. The tortoise caterpillar: carnivory and armoured larval morphology of the metalmark butterfly Pachythone xanthe (Lepidoptera: Riodinidae). J. Nat. Hist. 54, 309–319 (2020).

    Article 

    Google Scholar 

  • 43.

    Nielsen, G. J. & Kaminski, L. A. Immature stages of the Rubiaceae-feeding metalmark butterflies (Lepidoptera: Riodinidae), and a new function for the tentacle nectary organs. Zootaxa 4524, 1–32 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Kaminski, L. A., Carneiro, E., Dolibaina, D. R., Casagrande, M. M. & Mielke, O. H. H. Oviposition of Minstrellus grandis (Lepidoptera: Riodinidae) in a harmful ant-plant symbiosis. Acta Amazon. 50, 256–259 (2020).

    Article 

    Google Scholar 

  • 45.

    Kaminski, L. A. & Lima, L. D. Larval omnivory in the myrmecophilous butterfly Setabis lagus lagus (Riodinidae: Nymphidiini). J. Lepid. Soc. 73, 276–279 (2019).

    Google Scholar 

  • 46.

    Lamborn, W. A. On the relationship between certain West African insects, especially ants, Lycaenidae, and Homoptera. Trans. Ent. Soc. Lond. 1913, 436–498 (1914).

    Google Scholar 

  • 47.

    Eastwood, R. & Fraser, A. M. Associations between lycaenid butterflies and ants in Australia. Austral. Ecol. 24, 503–537 (1999).

    Article 

    Google Scholar 

  • 48.

    Bruch, C. Orugas mirmecofilas de Hameris epulus signatus – Stich. Rev. Soc. Entomol. Argent. 1, 2–9 (1926).

    Google Scholar 

  • 49.

    Bourquin, F. Notas sobre la metamorfosis de Hamearis susanae Orfila, 1953, con oruga mirmicófila (Lep. Riodin.). Rev. Soc. Entomol. Argent. 16, 83–87 (1953).

  • 50.

    Ross, G. N. Life-history studies on Mexican butterflies. IV. The ecology and ethology of Anatole rossi, a myrmecophilous metalmark (Lepidoptera: Riodinidae). Ann. Entomol. Soc. Am. 59, 985–1004 (1966).

  • 51.

    Kaminski, L. A. & Carvalho-Filho, F. S. Life history of Aricoris propitia (Lepidoptera: Riodinidae)—A myrmecophilous butterfly obligately associated with fire ants. Psyche 2012, Article ID 126876; https://doi.org/10.1155/2012/126876 (2012).

  • 52.

    Fiedler, K. The host genera of ant-parasitic Lycaenidae butterflies: a review. Psyche 2012, Article ID 153975; https://doi.org/10.1155/2012/153975 (2012).

  • 53.

    Rocha, F. H., Lachaud, J.-P. & Pérez-Lachaud, G. Myrmecophilous organisms associated with colonies of the ponerine ant Neoponera villosa (Hymenoptera: Formicidae) nesting in Aechmea bracteata bromeliads: a biodiversity hotspot. Myrmecol. News 30, 73–92 (2020).

    Google Scholar 

  • 54.

    Rocha, F. H., Lachaud, J.-P., Hénaut, Y., Pozo, C. & Pérez-Lachaud, G. Nest site selection during colony relocation in Yucatan Peninsula populations of the ponerine ant Neoponera villosa (Hymenoptera: Formicidae). Insects 11, 200; https://doi.org/10.3390/insects11030200 (2020).

  • 55.

    Mackay, W. P. & Mackay, E. E. The systematics and biology of the New World ants of the genus Pachycondyla (Hymenoptera: Formicidae) (The Edwin Mellen Press, 2010).

    Google Scholar 

  • 56.

    Wheeler, W. M. The ants of Texas, New Mexico and Arizona. Part I. Bull. Am. Mus. Nat. Hist. 24, 399–485 (1908).

  • 57.

    Lachaud, J.-P., Fresneau, D. & García-Pérez, J. Étude des stratégies d’approvisionnement chez 3 espèces de fourmis ponérines (Hymenoptera: Formicidae). Folia Entomol. Mex. 61, 159–177 (1984).

    Google Scholar 

  • 58.

    Hölldobler, B. Liquid food transmission and antennation signals in ponerine ants. Isr. J. Entomol. 19, 89–99 (1985).

    Google Scholar 

  • 59.

    Dejean, A. & Corbara, B. Predatory behavior of a Neotropical arboricolous ant: Pachycondyla villosa (Formicidae: Ponerinae). Sociobiology 17, 271–286 (1990).

    Google Scholar 

  • 60.

    Pérez-Bautista, M., Lachaud, J.-P. & Fresneau, D. L. división del trabajo en la hormiga primitiva Neoponera villosa (Hymenoptera : Formicidae). Folia Entomol. Mex. 65, 119–130 (1985).

    Google Scholar 

  • 61.

    Dejean, A., Olmsted, I. & Snelling, R. R. Tree-epiphyte-ant relationships in the low inundated forest of Sian Ka´an biosphere reserve, Quintana Roo, Mexico. Biotropica 27, 57–70 (1995).

    Article 

    Google Scholar 

  • 62.

    Fernandes, I. O., De Oliveira, M. L. & Delabie, J. H. C. Notes on the biology of Brazilian ant populations of the Pachycondyla foetida species complex (Formicidae: Ponerinae). Sociobiology 60, 380–386 (2013).

    Article 

    Google Scholar 

  • 63.

    Castaño-Meneses, G. et al. The ant community and their accompanying arthropods in cacao dry pods: An unexplored diverse habitat. Dugesiana 22, 29–35 (2015).

    Google Scholar 

  • 64.

    Dejean, A. Influence de l’environnement pré-imaginal et précoce dans le choix du site de nidification de Pachycondyla (= Neoponera) villosa (Fabr.) (Formicidae, Ponerinae). Behav. Process. 21, 107–125 (1990).

  • 65.

    Dejean, A. & Olmsted, I. Ecological studies on Aechmea bracteata (Swartz) (Bromeliaceae). J. Nat. Hist. 31, 1313–1334 (1997).

    Article 

    Google Scholar 

  • 66.

    Hénaut, Y. et al. A tank bromeliad favors spider presence in a Neotropical inundated forest. PLoS ONE 9, e114592 (2014).

  • 67.

    Pérez-Lachaud, G., Jervis, M. A., Reemer, M. & Lachaud, J.-P. An unusual, but not unexpected, evolutionary step taken by syrphid flies: the first record of true primary parasitoidism of ants by Microdontinae. Biol. J. Linn. Soc. 111, 462–472 (2014).

    Article 

    Google Scholar 

  • 68.

    Pérez-Lachaud, G. & Lachaud, J.-P. Hidden biodiversity in entomological collections: The overlooked co-occurrence of dipteran and hymenopteran ant parasitoids in stored biological material. PLoS ONE 12, e0184614 (2017).

  • 69.

    Benzing, D. H., Derr, J. A. & Titus, J. E. The water chemistry of microcosms associated with the bromeliad Aechmea bracteata. Am. Midl. Nat. 87, 60–70 (1972).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Beutelspacher Baigts, C. R. Bromeliáceas Como Ecosistemas, con Especial Referencia a Aechmea bracteata (Swartz) Griseb. Plaza y Valdés, México (1999).

  • 71.

    Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).

    Article 

    Google Scholar 

  • 72.

    Ivanova, N. V., DeWaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Nat. Acad. Sci. USA 101, 14812–14817 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Montes-Ortiz, L. & Elías-Gutiérrez, M. Faunistic survey of the zooplankton community in an oligotrophic sinkhole, Cenote Azul (Quintana Roo, Mexico), using different sampling methods, and documented with DNA barcodes. J. Limnol. 77, 428–440 (2018).

    Google Scholar 

  • 75.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Guindon S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

  • 79.

    Stehr, F. W. Order Lepidoptera. In: Stehr, F. W. (ed.) Immature insects. Vol. 1. Kendall-Hunt Publishing Company (1987).

  • 80.

    DeVries, P. J. The larval ant-organs of Thisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool. J. Linn. Soc. 94, 379–393 (1988).

    Article 

    Google Scholar 

  • 81.

    Godman, F. D. & Salvin, O. Biologia Centrali-Americana. Insecta. Lepidoptera-Rhopalocera 1: 462, pl. 47, fig. 7–8. Published for the editors by R.H. Porter, London (1886).

  • 82.

    D’Abrera, B. Butterflies of the Neotropical Region. Part VI (Riodinidae). Hill House (1994).

  • 83.

    Lamas, G. Hesperioidea – Papilionoidea. In: Heppner, J. B. (ed.) Atlas of Neotropical Lepidoptera. Checklist: Part 4A. Association for Tropical Lepidoptera (2004).

  • 84.

    Hall, J. P. W. & Harvey, D. J. A phylogenetic analysis of the Neotropical riodinid butterfly genera Juditha, Lemonias, Thisbe and Uraneis, with a revision of Juditha (Lepidoptera: Riodinidae: Nymphidiini). Syst. Entomol. 26, 453–490 (2001).

    Article 

    Google Scholar 

  • 85.

    Zhang, J., Cong, Q., Shen, J., Opler, P. A. & Grishin, N. V. Genomic evidence suggests further changes of butterfly names. Taxon. Rep. Intern. Lepid. Surv. 8(7), 1–40 (2020).

    Google Scholar 

  • 86.

    Zhang, J., Cong, Q., Shen, J., Opler, P. A. & Grishin, N. V. Genomics-guided refinement of butterfly taxonomy. Taxon. Rep. Intern. Lepid. Surv. 9(3), 1–54 (2021).

    Google Scholar 

  • 87.

    Arellano-Covarrubias, A., Llorente-Bousquets, J. & Luis-Martínez, A. Distribución y fenología de la familia Riodinidae (Lepidoptera: Papilionoidea) en el bosque tropical subcaducifolio de Oaxaca, México. Rev. Biol. Trop. 66, 503–558 (2018).

    Article 

    Google Scholar 

  • 88.

    Pozo, C. et al. Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico’s Calakmul Region. Fla. Entomol. 91, 407–422 (2008).

    Article 

    Google Scholar 

  • 89.

    Erwin, T. L. Tropical forest canopies: the last biotic frontier. Bull. Entomol. Soc. Am. 29, 14–19 (1983).

    Google Scholar 

  • 90.

    Rico-Gray, V. & Oliveira, P. S. The Ecology and Evolution of Ant–Plant interactions (The University of Chicago Press, 2007).

    Book 

    Google Scholar 

  • 91.

    DeVries, P. J., Cabral, B. C. & Penz, C. M. The early stages of Apodemia paucipuncta (Riodinidae): myrmecophily, a new caterpillar ant-organ and consequences for classification. Milw. Public Mus. Contrib. Biol. Geol. 102, 1–13 (2004).

    Google Scholar 

  • 92.

    Kaminski, L. A., Mota, L. L., Freitas, A. V. L. & Moreira, G. R. P. Two ways to be a myrmecophilous butterfly: natural history and comparative immature-stage morphology of two species of Theope (Lepidoptera: Riodinidae). Biol. J. Linn. Soc. 108, 844–870 (2013).

    Article 

    Google Scholar 

  • 93.

    Kaminski, L. A., Mota, L. L. & Freitas, A. V. L. Larval cryptic coloration and mistletoe use in the metalmark butterfly Dachetola azora (Lepidoptera: Riodinidae). Entomol. Am. 120, 18–23 (2014).

    Google Scholar 

  • 94.

    Torres, P. J. & Pomerantz, A. F. Butterfly kleptoparasitism and first account of immature stages, myrmecophily, and bamboo host plant of the metalmark Adelotypa annulifera (Riodinidae). J. Lepid. Soc. 70, 130–138 (2016).

    Google Scholar 

  • 95.

    Gallard, J.-Y. Les Riodinidae de Guyane. Pensoft, Sofia (2017).

  • 96.

    Hall, J. P. W. A monograph of the Nymphidiina (Lepidoptera: Riodinidae: Nymphidiini): Phylogeny, taxonomy, biology, and biogeography (The Entomological Society of Washington, 2018).

    Google Scholar 

  • 97.

    Moraga Medina, R. 2014. Pachythone gigas (Riodinidae). Área de Conservación Guanacaste (2014). https://www.acguanacaste.ac.cr/paginas-de-especies/insectos/111-160riodinidae/581-i-pachythone-gigas-i-riodinidae

  • 98.

    Dupont, S. T., Zemeitat, D. S., Lohman, D. J. & Pierce, N. E. The setae of parasitic Liphyra brassolis butterfly larvae form a flexible armour for resisting attack by their ant hosts (Lycaenidae: Lepidoptera). Biol. J. Linn. Soc. 117, 607–619 (2016).

    Article 

    Google Scholar 

  • 99.

    DeVries, P. J., Chacon, I. A. & Murray, D. Toward a better understanding of host use and biodiversity in riodinid butterflies (Lepidoptera). J. Res. Lepid. 31, 103–126 (1992).

    Google Scholar 

  • 100.

    Davidson, D. W., Cook, S. C., Snelling, R. R. & Chua, T. H. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300, 969–972 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 101.

    Schmidt, C. A. & Shattuck, S. O. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa 3817, 1–242 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 102.

    Atsatt, P. R. Lycaenid butterflies and ants: Selection for enemy-free space. Am. Nat. 118, 638–654 (1981).

    Article 

    Google Scholar 

  • 103.

    Dáttilo, W. et al. Trait-mediated indirect interactions of ant shape on the attack of caterpillars and fruits. Biol. Lett. 12, 20160401 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Orivel, J. & Dejean, A. Myrmecophily in Hesperiidae. The case of Vettius tertianus in ant gardens. C. R. Acad. Sci. Paris 323, 705–715 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: The functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).

    Google Scholar 

  • 106.

    Hall, J. P. W. & Harvey, D. J. Basal subtribes of the Nymphidiini (Lepidoptera: Riodinidae): Phylogeny and myrmecophily. Cladistics 18, 539–569 (2002).

    Article 

    Google Scholar 

  • 107.

    Hall, J. P. W. Phylogenetic revision of the new Neotropical riodinid genus Minstrellus (Lepidoptera: Riodinidae). Ann. Entomol. Soc. Am. 100, 773–786 (2007).

    Article 

    Google Scholar 

  • 108.

    Ballmer, G. R. & Wright, D. M. Notes on the immature stages of Setabis sp., a myrmecophagous riodinid butterfly (Lepidoptera: Riodinidae). J. Res. Lepid. 47, 11–15 (2014).

    Google Scholar 

  • 109.

    Callaghan, C. J. Studies on Restinga butterflies: I. Life cycle and immature biology of Menander felsina (Riodinidae), a myrmecophilous metalmark. J. Lepid. Soc. 31, 173–182 (1977).

    Google Scholar 

  • 110.

    Hojo, M. K, Yamaguchi, S., Akino, T. & Yamaoka, R. Adoption of lycaenid Niphanda fusca (Lepidoptera: Lycaenidae) caterpillars by the host ant Camponotus japonicus (Hymenoptera: Formicidae). Entomol. Sci. 17, 59–65 (2014).

  • 111.

    Maschwitz, U., Nässig, W. A., Dumpert, K. & Fiedler, K. Larval carnivory and myrmecoxeny, and imaginal myrmecophily in miletine lycaenids (Lepidoptera, Lycaenidae) on the Malay Peninsula. Tyô to Ga 39, 167–181 (1988).

    Google Scholar 


  • Source: Ecology - nature.com

    How diet affects tumors

    Coupling power and hydrogen sector pathways to benefit decarbonization