in

Sociability strongly affects the behavioural responses of wild guanacos to drones

  • 1.

    Jones, G. P., Pearlstine, L. G. & Percival, H. F. An assessment of small unmanned aerial vehicles for wildlife research. Wildl. Soc. Bull. 34, 750–758 (2006).

    Article 

    Google Scholar 

  • 2.

    Jones, G. P. The feasibility of using small unmanned aerial vehicles for wildlife research. Masters Thesis. (University of Florida, 2003).

  • 3.

    Watts, A. C. et al. Unmanned aircraft systems (UASs) for ecological research and natural-resource monitoring (Florida). Ecol. Restor. 26, 13–14 (2008).

    Article 

    Google Scholar 

  • 4.

    Chabot, D. Systematic Evaluation of a Stock Unmanned Aerial Vehicle (UAV) System for Small-Scale Wildlife Survey Applications. Masters Thesis. (McGill University, 2009).

  • 5.

    Koski, W. R. et al. Evaluation of an unmanned airborne system for monitoring marine mammals. Aquat. Mamm. 35, 347–357 (2009).

    MathSciNet 
    Article 

    Google Scholar 

  • 6.

    Soriano, P., Caballero, F. & Ollero, A. RF-based particle filter localization for wildlife tracking by using an UAV. Int. Symp. Robot. 40, 239–244 (2009).

    Google Scholar 

  • 7.

    Sukkarieh, S. UAV based search for a radio tagged animal using particle filters at Stuttgart. In Australasian Conference on Robotics and Automation (ACRA) (2009).

  • 8.

    Abd-Elrahman, A., Pearlstine, L. & Percival, F. Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surv. L. Inf. Sci. 65, 37–45 (2005).

    Google Scholar 

  • 9.

    Singh, K. K., Frazier, A. E. & Frazier, A. E. A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 00, 1–21 (2018).

    Google Scholar 

  • 10.

    Rebolo-Ifran, N., Grilli, M. G. & Lambertucci, S. Drones as a threat to wildlife: YouTube complements science in providing evidence about their effect. Environ. Conserv. https://doi.org/10.1017/S0376892919000080 (2019).

    Article 

    Google Scholar 

  • 11.

    Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. E. E. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).

    Article 

    Google Scholar 

  • 12.

    Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Pomeroy, P., O’Connor, L. & Davies, P. Assessing use of and reaction to unmanned aerial systems in gray and harbor seals during breeding and molt in the UK. J. Unmanned Veh. Syst. 3, 102–113 (2015).

    Article 

    Google Scholar 

  • 14.

    Giles, A. B. et al. Responses of bottlenose dolphins (Tursiops spp.) to small drones. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3440 (2020).

    Article 

    Google Scholar 

  • 15.

    Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, 1–14 (2017).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 9, 2142 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Irigoin-Lovera, C., Luna, D. M., Acosta, D. A. & Zavalaga, C. B. Response of colonial Peruvian guano birds to flying UAVs: Effects and feasibility for implementing new population monitoring methods. PeerJ 7, e8129 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 2016, e1831 (2016).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Barnas, A. F., Felege, C. J., Rockwell, R. F. & Ellis-Felege, S. N. A pilot(less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus). Polar Biol. 41, 1055–1062 (2018).

    Article 

    Google Scholar 

  • 20.

    Jarrett, D., Calladine, J., Cotton, A., Wilson, M. W. & Humphreys, E. Behavioural responses of non-breeding waterbirds to drone approach are associated with flock size and habitat. Bird Study 67, 190–196 (2020).

    Article 

    Google Scholar 

  • 21.

    Bevan, E. et al. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS One 13, e0194460 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Stankowich, T. Ungulate flight responses to human disturbance: A review and meta-analysis. Biol. Conserv. 141, 2159–2173 (2008).

    Article 

    Google Scholar 

  • 23.

    Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269–286 (2012).

    Article 

    Google Scholar 

  • 24.

    Wisdom, M. J., Ager, A. A., Preisler, H. K., Cimon, N. J. & Johnson, B. K. Effects of off-road recreation on mule deer and elk. In Transactions of the 69th North American Wildlife and Natural Resources Conference 531–550 (2004).

  • 25.

    Penny, S. G., White, R. L., Scott, D. M., MacTavish, L. & Pernetta, A. P. Using drones and sirens to elicit avoidance behaviour in white rhinoceros as an anti-poaching tactic. Proc. R. Soc. B Biol. Sci. 286, 20191135 (2019).

    Article 

    Google Scholar 

  • 26.

    Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).

    Google Scholar 

  • 27.

    Dill, L. M. & Frid, A. Behaviourally mediated biases in transect surveys: A predation risk sensitivity approach. Can. J. Zool. 98, 697–704 (2020).

    Article 

    Google Scholar 

  • 28.

    Pulliam, R. H. On the advantage of flocking. J. Theor. Biol. 38, 419–422 (1973).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Taraborelli, P., Gregorio, P., Moreno, P., Novaro, A. & Carmanchahi, P. Cooperative vigilance: The guanaco’ s (Lama guanicoe) key antipredator mechanism. Behav. Process. 91, 82–89 (2012).

    Article 

    Google Scholar 

  • 30.

    Delm, M. M. Vigilance for predators: Detection and dilution effects. Behav. Ecol. Sociobiol. 26, 337–342 (1990).

    Article 

    Google Scholar 

  • 31.

    Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).

    Article 

    Google Scholar 

  • 32.

    Brunton, E., Bolin, J., Leon, J. & Burnett, S. Fright or flight? Behavioural responses of kangaroos to drone-based monitoring. Drones 3, 1–11 (2019).

    Article 

    Google Scholar 

  • 33.

    Lent, P. C. Mother-infant relationships in ungulates. Behav. Ungulates Relat. Manag. I, 14–55 (1974).

    Google Scholar 

  • 34.

    Franklin, W. Contrasting socioecologies of South America´s wild camelids: The vicuña and the guanaco. Adv. Study Mamm. Behav. 7, 573–629 (1983).

    Google Scholar 

  • 35.

    Ortega, I. M. & Franklin, W. L. Social organization, distribution and movements of a migratory guanaco population in the Chilean Patagonia. Rev. Chil. Hist. Nat. 68, 489–500 (1995).

    Google Scholar 

  • 36.

    Schroeder, N. M., Panebianco, A., Musso, R. G. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: A gregarious ungulate as a study model. R. Soc. Open Sci. 7, 191482 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Lima, S. L. Back to the basics of anti-predatory vigilance: the group size effect. Anim. Behav. 49, 11–20 (1995).

    Article 

    Google Scholar 

  • 38.

    Marino, A. & Baldi, R. Vigilance patterns of territorial guanacos (Lama guanicoe): The role of reproductive interests and predation risk. Ethology 114, 413–423 (2008).

    Article 

    Google Scholar 

  • 39.

    Taraborelli, P. et al. Different factors that modify anti-predator behaviour in guanacos (Lama guanicoe). Acta Theriol. (Warsz) 59, 529–539 (2014).

    Article 

    Google Scholar 

  • 40.

    Donadio, E. & Buskirk, S. W. Flight behavior in guanacos and vicuñas in areas with and without poaching in western Argentina. Biol. Conserv. 127, 139–145 (2006).

    Article 

    Google Scholar 

  • 41.

    Marino, A. & Johnson, A. Behavioural response of free-ranging guanacos (Lama guanicoe) to land-use change: Habituation to motorised vehicles in a recently created reserve. Wildl. Res. 39, 503–511 (2012).

    Article 

    Google Scholar 

  • 42.

    Malo, J. E., Acebes, P. & Traba, J. Measuring ungulate tolerance to human with flight distance: A reliable visitor management tool?. Biodivers. Conserv. 20, 3477e3488 (2011).

    Article 

    Google Scholar 

  • 43.

    Marino, A. Indirect measures of reproductive effort in a resource-defense polygynous ungulate: Territorial defense by male guanacos. J. Ethol. 30, 83–91 (2012).

    Article 

    Google Scholar 

  • 44.

    Marino, A. & Ricardo, B. Vigilance patterns of territorial guanacos (Lama guanicoe): the role of reproductive interests and predation risk. Ethology 114, 413–423 (2008).

    Article 

    Google Scholar 

  • 45.

    Merino, M. L. & Cajal, C. J. Estructura social de la población de guanacos (Lama guanicoe Muller, 1776) en la costa norte de Península Mitre, Tierra del Fuego, Argentina. Stud. Neotrop. Fauna Environ. 28, 129–138 (1993).

    Article 

    Google Scholar 

  • 46.

    Marino, A. & Baldi, R. Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary Guanaco. PLoS ONE 9, e89060 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Fattorini, N. et al. Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: Environmental and endogenous drivers. Behav. Process. 167, 103909 (2019).

    Article 

    Google Scholar 

  • 48.

    Blank, D., Ruckstuhl, K. & Yang, W. Influence of population density on group sizes in goitered gazelle (Gazella subgutturosa Guld., 1780). Eur. J. Wildl. Res. 58, 981–989 (2012).

    Article 

    Google Scholar 

  • 49.

    Isvaran, K. Intraspecific variation in group size in the blackbuck antelope: The roles of habitat structure and forage at different spatial scales. Oecologia 154, 435–444 (2007).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Mahoney, S. P., Mawhinney, K., McCarthy, C., Anions, D. & Taylor, S. Caribou reactions to provocation by snowmachines in Newfoundland. Rangifer 21, 35 (2001).

    Article 

    Google Scholar 

  • 51.

    Ruiz Blanco, M. et al. Supervivencia y causas de mortalidad durante el primer año de vida de guanacos en el norte de patagonia. In XXVII Jornadas Argentinas de Mastozoología 151 (2014).

  • 52.

    Weimerskirch, H., Prudor, A. & Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biol. 41, 259–266 (2018).

    Article 

    Google Scholar 

  • 53.

    McIntosh, R. R., Holmberg, R. & Dann, P. Looking without landing-using Remote Piloted Aircraft to monitor fur seal populations without disturbance. Front. Mar. Sci. 5, (2018).

  • 54.

    Mesquita, G. P., Rodríguez-Teijeiro, J. D., Wich, S. A. & Mulero-Pázmány, M. Measuring disturbance at swift breeding colonies due to the visual aspects of a drone: a quasi-experiment study. Curr. Zool. https://doi.org/10.1093/cz/zoaa038 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Scobie, C. A. & Hugenholtz, C. H. Wildlife monitoring with unmanned aerial vehicles: Quantifying distance to auditory detection. Wildl. Soc. Bull. 40, 781–785 (2016).

    Article 

    Google Scholar 

  • 56.

    Rümmler, M. C., Esefeld, J., Hallabrin, M. T., Pfeifer, C. & Mustafa, O. Emperor penguin reactions to UAVs: First observations and comparisons with effects of human approach. Remote Sens. Appl. Soc. Environ. 23, 100545 (2021).

    Google Scholar 

  • 57.

    Zbyryt, A., Dylewski, Ł, Morelli, F., Sparks, T. H. & Tryjanowski, P. Behavioural responses of adult and young White Storks Ciconia ciconia in nests to an unmanned aerial vehicle. Acta Ornithol. 55, 243–251 (2020).

    Google Scholar 

  • 58.

    Christiansen, F., Rojano-Doñate, L., Madsen, P. T. & Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 3, 277 (2016).

    Article 

    Google Scholar 

  • 59.

    Arona, L., Dale, J., Heaslip, S. G., Hammill, M. O. & Johnston, D. W. Assessing the disturbance potential of small unoccupied aircraft systems (UAS) on gray seals (Halichoerus grypus) at breeding colonies in Nova Scotia, Canada. PeerJ https://doi.org/10.7717/peerj.4467 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Goebel, M. E. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).

    Article 

    Google Scholar 

  • 61.

    Cracknell, A. P. UAVs: Regulations and law enforcement. Int. J. Remote Sens. 38, 3054–3067 (2017).

    Article 

    Google Scholar 

  • 62.

    ANAC, A. N. de A. C. Reglamento de Vehículos Aéreos no Tripulados (VANT) y de Sistemas de Vehículos Aéreos no Tripulados (SVANT). (2019).

  • 63.

    Brisson-Curadeau, É. et al. Seabird species vary in behavioural response to drone census. Sci. Rep. 7, 17884 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Rümmler, M.-C., Mustafa, O., Maercker, J., Peter, H.-U. & Esefeld, J. Sensitivity of Adélie and Gentoo penguins to various flight activities of a micro UAV. Polar Biol. 41, 2481–2493 (2018).

    Article 

    Google Scholar 

  • 65.

    Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 7, 1–7 (2019).

    Article 

    Google Scholar 

  • 66.

    Young, J. K. & Franklin, W. L. Territorial Fidelity of male guanacos in the Patagonia of Southern Chile. J. Mammal. 85, 72–78 (2004).

    Article 

    Google Scholar 

  • 67.

    Martínez Carretero, E. La Provincia Fitogeográfica de la Payunia. Boletín la Soc. Argentina Botánica 39, 195–226 (2004).

    Google Scholar 

  • 68.

    Schroeder, N. M. et al. Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: Insights from using density surface and null models. PLoS One 9, e85960 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Bolgeri, M. J. Caracterización de movimientos migratorios en guanacos (Lama guanicoe) y patrones de depredación por pumas (Puma concolor) en la Payunia, Mendoza. Phd Thesis. (Universidad Nacional del Comahue, 2016).

  • 70.

    Bolgeri, M. J. & Novaro, A. J. Variación espacial en la depredación por puma (Puma concolor) sobre guanacos (Lama guanicoe) en la Payunia, Mendoza,Argentina. Mastozoología Neotrop. 22, 255–264 (2015).

    Google Scholar 

  • 71.

    Candia, R., Puig, S., Dalmasso, A., Videla, F. & Martínez Carretero, E. Diseño del Plan de Manejo para la reserva provincial La Payunia (Malargüe, Mendoza). Multequina 2, 5–87 (1993).

    Google Scholar 

  • 72.

    Carmanchahi, P. D. et al. Physiological response of wild guanacos to capture for live shearing. Wildl. Res. 38, 61–68 (2011).

    Article 

    Google Scholar 

  • 73.

    Martin, P. & Bateson, P. Measuring Behaviour. An Introductory Guide. (Cambridge University Press, 2007).

  • 74.

    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).

    Article 

    Google Scholar 

  • 75.

    McCullagh, P. & Nelder, J. Generalized Linear Models. Second Edition. (Chapman & Hall, 1989).

  • 76.

    Fox, J. & Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87, 178–183 (1992).

    Article 

    Google Scholar 

  • 77.

    Zuur, A. F., Ieno, E. N. & Smith, G. M. Analysing Ecological Data. (Springer, 2007).

  • 78.

    Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models. Cambridge 651 (2007). https://doi.org/10.2277/0521867061

  • 79.

    Korner-Nievergelt, F. et al. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan. (2015). https://doi.org/10.1007/s13398-014-0173-7.2

  • 80.

    R Core Team. R Development Core Team. R A Lang. Environ. Stat. Comput. 55, 275–286 (2016).

  • 81.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd edn. (2019).

  • 82.

    Gelman, A. et al. Data analysis using regression and multilevel/hierarchical models. R package version 1, 10–1 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Coupling power and hydrogen sector pathways to benefit decarbonization

    Saving seaweed with machine learning