Dawbin, W. H. The migrations of humpback whales which pass the New Zealand coast. Trans. R. Soc. New Zeal. 84, 147–196 (1956).
Chittleborough, R. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshw. Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).
Google Scholar
Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: Insights from water temperature into the longest mammalian migration. Biol. Let. 3, 302–305. https://doi.org/10.1098/rsbl.2007.0067 (2007).
Google Scholar
Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).
Google Scholar
Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina Bay Antarctic Peninsula. PLoS ONE 6, e19173. https://doi.org/10.1371/journal.pone.0019173 (2011).
Google Scholar
Barendse, J. et al. Transit station or destination? Attendance patterns, movements and abundance estimate of humpback whales off west South Africa from photographic and genotypic matching. Afr. J. Mar. Sci. 33, 353–373. https://doi.org/10.2989/1814232X.2011.637343 (2011).
Google Scholar
Best, P. B., Sekiguchi, K. & Findlay, K. P. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Marine Ecol. Progr. Ser. Oldendorf 118, 1–12. https://doi.org/10.3354/meps118001 (1995).
Google Scholar
Findlay, K. & Best, P. Summer incidence of humpback whales on the west coast of South Africa. S. Afr. J. Mar. Sci. 15, 279–282. https://doi.org/10.2989/02577619509504851 (1995).
Google Scholar
Findlay, K. P. et al. Humpback whale “super-groups”–A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).
Google Scholar
Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble‐net feeding and the formation of ‘super‐groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. (2021).
Veitch, J., Penven, P. & Shillington, F. The Benguela: A laboratory for comparative modeling studies. Prog. Oceanogr. 83, 296–302. https://doi.org/10.1016/j.pocean.2009.07.008 (2009).
Google Scholar
Preston-Whyte, R. A. & Tyson, P. D. Atmosphere and weather of southern Africa (Oxford University Press, 1988).
Nemoto, T., Best, P., Ishimaru, K. & Takano, H. Diatom films on whales [minke whales and 4 species of toothed whales] in South African waters. Scientific Reports of the Whales Research Institute (1980).
Hutchings, L., Pitcher, G., Probyn, T. & Bailey, G. in Upwelling in the ocean: modern processes and ancient records Vol. 18 (eds CP Summerhayes et al.) Ch. 3, 65–81 (Wiley & Sons, 1995).
Clapham, P. J. in Encyclopedia of marine mammals (eds B Würsig, JGM Thewissen, & KM Kovacs) 489–492 (Academic Press, 2018).
Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93. https://doi.org/10.1007/s40641-015-0008-4 (2015).
Google Scholar
Mackas, D. L. & Beaugrand, G. Comparisons of zooplankton time series. J. Mar. Syst. 79, 286–304. https://doi.org/10.1016/j.jmarsys.2008.11.030 (2010).
Google Scholar
Mackas, D. et al. Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Prog. Oceanogr. 97, 31–62. https://doi.org/10.1016/j.pocean.2011.11.005 (2012).
Google Scholar
Huggett, J., Verheye, H., Escribano, R. & Fairweather, T. Copepod biomass, size composition and production in the Southern Benguela: Spatio–temporal patterns of variation, and comparison with other eastern boundary upwelling systems. Prog. Oceanogr. 83, 197–207. https://doi.org/10.1016/j.pocean.2009.07.048 (2009).
Google Scholar
Verheye, H. M., Lamont, T., Huggett, J. A., Kreiner, A. & Hampton, I. Plankton productivity of the Benguela current large marine ecosystem (BCLME). Environ. Dev. 17, 75–92. https://doi.org/10.1016/j.envdev.2015.07.011 (2016).
Google Scholar
Shannon, L. J. et al. Exploring temporal variability in the Southern Benguela ecosystem over the past four decades using a time-dynamic ecosystem model. Front. Mar. Sci. 7, 540 (2020).
Google Scholar
Jarre, A. et al. Synthesis: climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish. Oceanogr. 24, 122–149. https://doi.org/10.1111/fog.12086 (2015).
Google Scholar
Lamont, T., García-Reyes, M., Bograd, S., Van Der Lingen, C. & Sydeman, W. Upwelling indices for comparative ecosystem studies: Variability in the Benguela Upwelling System. J. Mar. Syst. 188, 3–16. https://doi.org/10.1016/j.jmarsys.2017.05.007 (2018).
Google Scholar
Tim, N., Zorita, E. & Hünicke, B. Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation. Ocean Sci. 11, 483–502. https://doi.org/10.5194/os-11-483-2015 (2015).
Google Scholar
Lamont, T., Barlow, R. & Brewin, R. Long-term trends in phytoplankton chlorophyll a and size structure in the Benguela Upwelling System. J. Geophys. Res. Oceans 124, 1170–1195. https://doi.org/10.1029/2018JC014334 (2019).
Google Scholar
Ragoasha, N. et al. Lagrangian pathways in the southern Benguela upwelling system. J. Mar. Syst. 195, 50–66. https://doi.org/10.1016/j.jmarsys.2019.03.008 (2019).
Google Scholar
Shannon, V., Hempel, G., Moloney, C., Woods, J. D. & Malanotte-Rizzoli, P. Benguela: Predicting a Large Marine Ecosystem (Elsevier, 2006).
Veitch, J., Penven, P. & Shillington, F. Modeling equilibrium dynamics of the Benguela current system. J. Phys. Oceanogr. 40, 1942–1964. https://doi.org/10.1175/2010jpo4382.1 (2010).
Google Scholar
Lachkar, Z. & Gruber, N. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 9, 293–308. https://doi.org/10.5194/bg-9-293-2012 (2012).
Google Scholar
Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792. https://doi.org/10.1038/ngeo1273 (2011).
Google Scholar
Hutchings, L. et al. Multiple factors affecting South African anchovy recruitment in the spawning, transport and nursery areas. S. Afr. J. Mar. Sci. 19, 211–225. https://doi.org/10.2989/025776198784126908 (1998).
Google Scholar
Rossi, V., López, C., Sudre, J., Hernández-García, E. & Garçon, V. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. Geophys. Res. Lett. https://doi.org/10.1029/2008gl033610 (2008).
Google Scholar
Barendse, J. & Best, P. B. Shore-based observations of seasonality, movements, and group behavior of southern right whales in a nonnursery area on the South African west coast. Mar. Mamm. Sci. 30, 1358–1382 (2014).
Google Scholar
Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22 (2010).
Google Scholar
Gibbons, M. J. An introduction to the Zooplankton of the Benguella current Region. (1997).
Olsen, Ø. Hvaler og hvalfangst i Sydafrika. 1–56 (Bergens Museums Arbok 1914–1915, 1914).
Meynecke, J. O. et al. Responses of humpback whales to a changing climate in the Southern Hemisphere: Priorities for research efforts. Mar. Ecol. 41, e12616 (2020).
Google Scholar
Stockin, K. A. & Burgess, E. A. Opportunistic Feeding of an Adult Humpback Whale (Megaptera novaeangliae) Migrating Along the Coast of Southeastern Queensland, Australia. Aquat. Mamm. 31, 120. https://doi.org/10.1578/AM.31.1.2005.120 (2005).
Google Scholar
Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the Azores in relation to the North Atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279. https://doi.org/10.3354/meps09349 (2011).
Google Scholar
Trudelle, L. et al. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground. R. Soc. Open Sci. 3, 160616. https://doi.org/10.1098/rsos.160616 (2016).
Google Scholar
Veitch, J., Hermes, J., Lamont, T., Penven, P. & Dufois, F. Shelf-edge jet currents in the southern Benguela: A modelling approach. J. Mar. Syst. 188, 27–38 (2018).
Google Scholar
Hutchings, L. et al. The Benguela current: An ecosystem of four components. Prog. Oceanogr. 83, 15–32. https://doi.org/10.1016/j.pocean.2009.07.046 (2009).
Google Scholar
Rockwood, R. C., Elliott, M. L., Saenz, B., Nur, N. & Jahncke, J. Modeling predator and prey hotspots: Management implications of baleen whale co-occurrence with krill in Central California. PLoS ONE 15, e0235603 (2020).
Google Scholar
Hayward, T. L. & Venrick, E. L. Nearsurface pattern in the California Current: Coupling between physical and biological structure. Deep Sea Res. Part II 45, 1617–1638 (1998).
Google Scholar
Croll, D. A. et al. From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).
Google Scholar
Walker, D. & Peterson, W. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela upwelling system in April 1988. S. Afr. J. Mar. Sci. 11, 289–305 (1991).
Google Scholar
Stuart, V. & Pillar, S. Diel grazing patterns of all ontogenetic stages of Euphausia lucens and in situ predation rates on copepods in the southern Benguela upwelling region. Mar. Ecol. Progr. Ser. 2, 227–241 (1990).
Google Scholar
Clapham, P. & Baker, C. (Academic, New York, 2002).
Shannon, L. J., Field, J. G. & Moloney, C. L. Simulating anchovy–sardine regime shifts in the southern Benguela ecosystem. Ecol. Model. 172, 269–281 (2004).
Google Scholar
Lett, C., Roy, C., Levasseur, A., Van Der Lingen, C. D. & Mullon, C. Simulation and quantification of enrichment and retention processes in the southern Benguela upwelling ecosystem. Fish. Oceanogr. 15, 363–372. https://doi.org/10.1111/j.1365-2419.2005.00392.x (2006).
Google Scholar
Branch, T. A. Humpback whale abundance south of 60°S from three complete circumpolar sets of surveys. J. Cetacean Res. Manage. https://doi.org/10.47536/jcrm.vi.305 (2011).
Google Scholar
Findlay, K., Best, P. & Meÿer, M. Migrations of humpback whales past Cape Vidal, South Africa, and an estimate of the population increase rate (1988–2002). Afr. J. Mar. Sci. 33, 375–392. https://doi.org/10.2989/1814232x.2011.637345 (2011).
Google Scholar
Henson, S. A., Cole, H. S., Hopkins, J., Martin, A. P. & Yool, A. Detection of climate change-driven trends in phytoplankton phenology. Glob. Change Biol. 24, e101–e111 (2018).
Google Scholar
Carvalho, I. et al. Does temporal and spatial segregation explain the complex population structure of humpback whales on the coast of West Africa?. Mar. Biol. 161, 805–819 (2014).
Google Scholar
Kershaw, F. et al. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol. Ecol. 26, 977–994 (2017).
Google Scholar
Korrûbel, J. An age-structured simulation model to investigate species replacement between pilchard and anchovy populations in the southern Benguela. S. Afr. J. Mar. Sci. 12, 375–391 (1992).
Google Scholar
Shannon, L. et al. The 1980s–a decade of change in the Benguela ecosystem. S. Afr. J. Mar. Sci. 12, 271–296 (1992).
Google Scholar
Verheye, H., Richardson, A., Hutchings, L., Marska, G. & Gianakouras, D. Long-term trends in the abundance and community structure of coastal zooplankton in the southern Benguela system, 1951–1996. Afr. J. Mar. Sci. 19, 2 (1998).
Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).
Google Scholar
Sydeman, W. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).
Google Scholar
Bonino, G., Di Lorenzo, E., Masina, S. & Iovino, D. Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci. Rep. 9, 1–14 (2019).
Google Scholar
Fearon, G. et al. Enhanced vertical mixing in coastal upwelling systems driven by diurnal-inertial resonance: Numerical experiments. J. Geophys. Res. Oceans https://doi.org/10.1002/essoar.10502743.1 (2020).
Google Scholar
Xiu, P., Chai, F., Curchitser, E. N. & Castruccio, F. S. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci. Rep. 8, 1–9 (2018).
Roxy, M. K. et al. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43, 826–833 (2016).
Google Scholar
Lockerbie, E. M. & Shannon, L. Toward exploring possible future states of the southern Benguela. Front. Mar. Sci. 6, 380 (2019).
Google Scholar
Ortega-Cisneros, K., Cochrane, K. L., Fulton, E. A., Gorton, R. & Popova, E. Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fish. Oceanogr. 27, 489–503 (2018).
Google Scholar
Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).
Google Scholar
Veitch, J. A. & Penven, P. The role of the A gulhas in the B enguela current system: A numerical modeling approach. J. Geophys. Res. Oceans 122, 3375–3393 (2017).
Google Scholar
Beal, L. M., De Ruijter, W. P., Biastoch, A. & Zahn, R. On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429–436 (2011).
Google Scholar
Beal, L. M. & Elipot, S. Broadening not strengthening of the Agulhas current since the early 1990s. Nature 540, 570–573 (2016).
Google Scholar
Lilliefors, H. W. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc. 64, 387–389. https://doi.org/10.1080/01621459.1969.10500983 (1969).
Google Scholar
Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002 (2005).
Google Scholar
Debreu, L., Marchesiello, P., Penven, P. & Cambon, G. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Model 49, 1–21. https://doi.org/10.1016/j.ocemod.2012.03.003 (2012).
Google Scholar
Shchepetkin, A. F. & McWilliams, J. C. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather Rev. 126, 1541–1580. https://doi.org/10.1175/1520-0493(1998)126%3C1541:qmasbo%3E2.0.co;2 (1998).
Google Scholar
Warner, J. C., Sherwood, C. R., Arango, H. G. & Signell, R. P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model 8, 81–113. https://doi.org/10.1016/j.ocemod.2003.12.003 (2005).
Google Scholar
Saha, S. et al. NCEP Climate Forecast System Reanalysis (CFSR) 6-Hourly Products, January 1979 to December 2010 (Boulder, 2010).
Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. D61C61TXF (Boulder, 2011).
Burchard, H. & Hofmeister, R. A dynamic equation for the potential energy anomaly for analysing mixing and stratification in estuaries and coastal seas. Estuar. Coast. Shelf Sci. 77, 679–687. https://doi.org/10.1016/j.ecss.2007.10.025 (2008).
Google Scholar
Yamaguchi, R., Suga, T., Richards, K. J. & Qiu, B. Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific. Clim. Dyn. 53, 4667–4681. https://doi.org/10.1007/s00382-019-04816-y (2019).
Google Scholar
Lennard, C., Hahmann, A. N., Badger, J., Mortensen, N. G. & Argent, B. Development of a numerical wind atlas for South Africa. Energy Proc. 76, 128–137. https://doi.org/10.1016/j.egypro.2015.07.873 (2015).
Google Scholar
Thomson, R. E. & Emery, W. J. Data Analysis Methods in Physical Oceanography 3rd edn. (Elsevier, 2014).
Source: Ecology - nature.com