in

Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters

  • 1.

    Collins, M. et al. SPM6 Extremes, abrupt changes and managing risks. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) 589-655 (In press, 2019).

  • 2.

    Hegerl, G. C., Hanlon, H. & Beierkuhnlein, C. Elusive extremes. Nat. Geosci. 4, 142–143 (2011).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Bérard, A., Ben Sassi, M., Renault, P. & Gros, R. Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. J. Soils Sediment. 12, 513–518 (2012).

    Article 

    Google Scholar 

  • 4.

    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Acosta-Martínez, V. et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl. Soil Ecol. 84, 69–82 (2014).

    Article 

    Google Scholar 

  • 6.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 

    Google Scholar 

  • 7.

    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    Article 

    Google Scholar 

  • 9.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    Article 

    Google Scholar 

  • 10.

    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 9, 3414–3420 (2015).

  • 11.

    Freeland, H. & Ross, T. ‘The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014-2018? Deep Sea Res. Part I: Oceanographic Res. Pap. 150, 103061 (2019).

    Article 

    Google Scholar 

  • 12.

    Lorenzo, E. D. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).

    Article 

    Google Scholar 

  • 13.

    Peña, M. A., Nemcek, N. & Robert, M. Phytoplankton responses to the 2014–2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).

    Article 

    Google Scholar 

  • 14.

    Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).

  • 16.

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article 

    Google Scholar 

  • 17.

    Sarmento, Hugo, Montoya, JoséM., Vázquez-Domínguez, Evaristo, Vaqué, Dolors & Gasol, JosepM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos. Trans. R. Soc. B: Biol. Sci. 365, 2137–2149 (2010).

    Article 

    Google Scholar 

  • 18.

    Joint, I. & Smale, D. A. Marine heatwaves and optimal temperatures for microbial assemblage activity. FEMS Microbiol Ecol 93, fiw243 (2017).

  • 19.

    Deschaseaux, E. O., Brien, J., Siboni, N., Petrou, K. & Seymour, J. R. Shifts in dimethylated sulfur concentrations and microbiome composition in the red-tide causing dinoflagellate Alexandrium minutum during a simulated marine heatwave. Biogeosciences 16, 4377–4391 (2019).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Hawley, A. K. et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat. Commun. 8, 1507 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Allers, E. et al. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. ISME J. 7, 256–268 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Wright, J. J. et al. Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME J. 8, 455–468 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Sherry, N. D., Boyd, P. W., Sugimoto, K. & Harrison, P. J. Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 46, 2557–2578 (1999).

  • 25.

    Harrison, P. J. Station Papa Time Series: insights into ecosystem dynamics. J. Oceanogr. 58, 259–264 (2002).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Freeland, H. J. Evidence of change in the winter mixed layer in the Northeast Pacific Ocean: a problem revisited. Atmos. Ocean 51, 126–133 (2013).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Stevens, H. & Ulloa, O. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. 10, 1244–1259 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Bryant, J. A., Stewart, F. J., Eppley, J. M. & DeLong, E. F. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology 93, 1659–1673 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Muck, S. et al. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front. Microbiol. 10, 2141 (2019).

  • 33.

    Medina Faull, L., Mara, P., Taylor, G. T. & Edgcomb, V. P. Imprint of trace dissolved oxygen on prokaryoplankton community structure in an oxygen minimum zone. Front. Mar. Sci. 7, 360 (2020).

  • 34.

    Reji, L., Tolar, B. B., Chavez, F. P. & Francis, C. A. Depth-differentiation and seasonality of planktonic microbial assemblages in the monterey bay upwelling system. Front. Microbiol. 11, 1075 (2020).

  • 35.

    Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Tsementzi, D. et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536, 179–183 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Choi, D. H., Karen, Selph & Noh, J. H. Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean. ALGAE 30, 223–232 (2015).

  • 38.

    Johnson, Z. I. et al. Niche partitioning among prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Sohm, J. A. et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 10, 333–345 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Not, F. et al. in Advances in Botanical Research (ed. Piganeau, G.) vol. 64, 1–53 (Academic Press, 2012).

  • 41.

    Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochemical Cycles 16, 11-1–11–18 (2002).

    Google Scholar 

  • 42.

    Richardson, T. L., Jackson, G. A., Ducklow, H. W. & Roman, M. R. Carbon fluxes through food webs of the eastern equatorial Pacific: an inverse approach. Deep Sea Res. Part I: Oceanographic Res. Pap. 51, 1245–1274 (2004).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Michaels, A. F. & Silver, M. W. Primary production, sinking fluxes and the microbial food web. Deep Sea Res. Part A. Oceanographic Res. Pap. 35, 473–490 (1988).

    Article 

    Google Scholar 

  • 44.

    Dufrêne, M. & Legendre, P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  • 45.

    Cáceres, M. D., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).

    Article 

    Google Scholar 

  • 46.

    Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5, e01371-14 (2014).

  • 47.

    Thrash, J. C. et al. Metabolic Roles of Uncultivated Bacterioplankton lineages in the Northern Gulf of Mexico “Dead Zone”. mBio 8, e01017-17 (2017).

  • 48.

    Kirchman, D. L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 39, 91–100 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Alonso, C., Warnecke, F., Amann, R. & Pernthaler, J. High local and global diversity of Flavobacteria in marine plankton. Environ. Microbiol. 9, 1253–1266 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5, e11888 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Selje, N., Simon, M. & Brinkhoff, T. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427, 445 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Buchan, A., González, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Luo, H. & Moran, M. A. Evolutionary ecology of the marine roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Simon, M. et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11, 1483–1499 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Sato, S. et al. Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci. Rep. 10, 9449 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6, 339–367 (2014).

    Article 

    Google Scholar 

  • 57.

    Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. & Walsh, D. A. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 8, 1301–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3, 14 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Andrei, A.-Ş. et al. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J 13, 1056–1071 (2019).

  • 61.

    Fukunaga, Y. et al. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J. Gen. Appl. Microbiol. 55, 267–275 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Gade, D., Stührmann, T., Reinhardt, R. & Rabus, R. Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ. Microbiol. 7, 1074–1084 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Luecker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).

  • 64.

    Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).

    Article 

    Google Scholar 

  • 65.

    Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Haro‐Moreno, J. M. et al. Ecogenomics of the SAR11 clade. Environ. Microbiol 22, 1748–1763 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 67.

    Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252–12 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Giovannoni, S. J. SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).

    Article 

    Google Scholar 

  • 69.

    Getz, E. W., Tithi, S. S., Zhang, L. & Aylward, F. O. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio. 9, e01089-18 (2018).

  • 70.

    Aylward, F. O. & Santoro, A. E. Heterotrophic thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415-20 (2020).

  • 71.

    Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Santoro, A. E., Casciotti, K. L. & Francis, C. A. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol. 12, 1989–2006 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Horak, R. E. A. et al. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. ISME J. 7, 2023–2033 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Qin, W. et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS 111, 12504–12509 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Haro-Moreno, J. M., Rodriguez-Valera, F., López-García, P., Moreira, D. & Martin-Cuadrado, A.-B. New insights into marine group III Euryarchaeota, from dark to light. ISME J. 11, 1102–1117 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 10, 2158–2173 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Orsi, W. D. et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 9, 1747–1763 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Hugoni, M. et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc. Natl Acad. Sci. USA 110, 6004–6009 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Matheus Carnevali, P. B. et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat. Commun. 10, 463 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Saw, J. H. W. et al. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11, e02975-19 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Alonso‐Sáez, L., Díaz‐Pérez, L. & Morán, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Mehrshad, M., Rodriguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Mullins, T. D., Britschgi, T. B., Krest, R. L. & Giovannoni, S. J. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40, 148–158 (1995).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore western mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microbiol. 65, 514–522 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Hoarfrost, A. et al. Global ecotypes in the ubiquitous marine clade SAR86. ISME J. 14, 178–188 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C. & Bertilsson, S. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J. 4, 1581–1590 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 89.

    Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Maldonado, M. T., Boyd, P. W., Harrison, P. J. & Price, N. M. Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2475–2485 (1999).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Peña, M. A. & Varela, D. E. Seasonal and interannual variability in phytoplankton and nutrient dynamics along Line P in the NE subarctic Pacific. Prog. Oceanogr. 75, 200–222 (2007).

    Article 

    Google Scholar 

  • 92.

    Whitney, F. A., Wong, C. S. & Boyd, P. W. Interannual variability in nitrate supply to surface waters of the Northeast Pacific Ocean. Mar. Ecol. Prog. Ser. 170, 15–23 (1998).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Crawford, W., Galbraith, J. & Bolingbroke, N. Line P ocean temperature and salinity, 1956–2005. Prog. Oceanogr. 75, 161–178 (2007).

    Article 

    Google Scholar 

  • 94.

    Whitney, F. A. & Freeland, H. J. Variability in upper-ocean water properties in the NE Pacific Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2351–2370 (1999).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Whitney, F. A., Freeland, H. J. & Robert, M. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75, 179–199 (2007).

    Article 

    Google Scholar 

  • 96.

    Siegel, D. A. et al. Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan. Front. Mar. Sci. 3, 030 (2016).

  • 97.

    Buesseler, K. O. et al. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elementa: Sci. Anthrop. 8, (2020).

  • 98.

    Stephens, B. M. et al. Organic matter composition at ocean station papa affects its bioavailability, bacterioplankton growth efficiency and the responding taxa. Front. Mar. Sci. 7, 590273 (2020).

  • 99.

    Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M. & Kelly, R. P. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429–3446 (2015).

    Article 

    Google Scholar 

  • 100.

    Fisher, J. et al. Copepod responses to, and recovery from, the recent marine heatwave in the Northeast Pacific. PICES Sci. 2019: Notes Sci. Board Chair 28, 65 (2020).

    Google Scholar 

  • 101.

    Batten, S. D. et al. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Sea Res. Part II: Topical Stud. Oceanogr. 147, 58–68 (2018).

    Article 

    Google Scholar 

  • 102.

    Geider, R. & Roche, J. L. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    Article 

    Google Scholar 

  • 103.

    Wohlers, J. et al. Changes in biogenic carbon flow in response to sea surface warming. Proc.Natl. Acad. Sci. USA 106, 7067–7072 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Bif, M. B. & Hansell, D. A. Seasonality of dissolved organic carbon in the upper Northeast Pacific Ocean. Glob. Biogeochem. Cycles 33, 526–539 (2019).

    CAS 
    Article 

    Google Scholar 

  • 105.

    Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. https://doi.org/10.1038/s41396-020-00811-y. (2020).

  • 106.

    Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. 80, 6807–6818 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 107.

    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 109.

    Ono, T., Shiomoto, A. & Saino, T. Recent decrease of summer nutrients concentrations and future possible shrinkage of the subarctic North Pacific high-nutrient low-chlorophyll region. Global Biogeochemical Cycles 22, GB3027 (2008).

  • 110.

    Walsh, D. A., Zaikova, E. & Hallam, S. J. Small Volume (1-3L) Filtration of Coastal Seawater Samples. JoVE https://doi.org/10.3791/1163 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Barwell-Clarke, J. & Whitney, F. Institute of Ocean Sciences nutrient Methods and Analysis. (1996).

  • 112.

    Zapata, M., Rodríguez, F. & Garrido, J. L. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29–45 (2000).

    CAS 
    Article 

    Google Scholar 

  • 113.

    Nemcek, N. & Peña, M. A. Institute of Ocean Sciences Protocols for Phytoplankton Pigment Analysis by HPLC. (2014).

  • 114.

    Wright, J. J., Lee, S., Zaikova, E., Walsh, D. A. & Hallam, S. J. DNA Extraction from 0.22 μM Sterivex Filters and Cesium Chloride Density Gradient Centrifugation. J. Vis. Exp. e1352, https://doi.org/10.3791/1352 (2009).

  • 115.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Rivers, A. R. iTag amplicon sequencing for taxonomix identification at JGI. http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-content/uploads/2013/05/iTagger-methods-1.pdf (2016).

  • 117.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 118.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 119.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 120.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 121.

    Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 122.

    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 37, 852–857 (2019).

  • 123.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).

  • 124.

    Rstudio Team. Rstudio: Integrated Development Environment for R (Rstudio Inc, 2016).

  • 125.

    Faust, K. & Raes, J. CoNet app: inference of biological association networks using Cytoscape. F1000Res 5, 1519 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 126.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Coupling power and hydrogen sector pathways to benefit decarbonization

    Saving seaweed with machine learning