Sponheimer, M. Isotopic evidence of early hominin diets. Proc. Natl. Acad. Sci. USA 110, 10513–10518 (2013).
Google Scholar
Fleagle, J. G. et al. (eds) Out of Africa I: The first hominin colonization of Eurasia. Vertebrate Paleobiology and Paleoanthropology (Springer, 2010).
Norton, C. J. & Braun, D. R. (eds) Asian Paleoanthropology: From Africa to China and Beyond. Vertebrate Paleobiology and Paleoanthropology (Springer, 2010).
Bettis, E. A. III. et al. Way out of Africa: Early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).
Google Scholar
Ciochon, R. L. Divorcing hominins from the Stegodon–Ailuropoda Fauna: New views on the antiquity of hominins in Asia. In Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 111–126 (Springer, 2010).
Google Scholar
Sémah, A.-M., Sémah, F., Djubiantono, T. & Brasseur, B. Landscapes and hominids’ environments: Changes between the Lower and the early Middle Pleistocene in Java (Indonesia). Quat. Int. 223, 451–454 (2010).
Google Scholar
Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154 (2016).
Google Scholar
Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).
Google Scholar
Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).
Google Scholar
Sutikna, T. et al. Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia. Nature 532, 366–369 (2016).
Google Scholar
Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).
Google Scholar
De Vos, J. Reconsideration of Pleistocene cave faunas from South China and their relation to the faunas from Java. Cour. Forsch. Inst. Senckenberg 69, 259–266 (1984).
Schwartz, J. H., Long, V. T., Cuong, N. L., Kha, L. T. & Tattersall, I. A diverse hominoid fauna from the late Middle Pleistocene breccia cave of Tham Kuyen, Socialist Republic of Vietnam. Anthrop. Pap. Am. Mus. Nat. Hist. 74, 1–11 (1994).
Schwartz, J. H., Long, V. T., Cuong, N. L., Kha, L. T. & Tattersall, I. A review of the Pleistocene hominoid fauna of the Socialist Republic of Vietnam. Anthrop. Pap. Am. Mus. Nat. Hist. 76, 1–24 (1995).
Reyes-Centeno, H. Out of Africa and into Asia: Fossil and genetic evidence on modern origins and dispersal. Quat. Int. 416, 249–262 (2016).
Google Scholar
Bae, C. J., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science 358, 9067 (2017).
Google Scholar
Dennell, R., Martinón-Torres, M., Bermúdez de Castro, J.-M. & Xing, G. A demographic history of Late Pleistocene China. Quat. Int. 559, 4–13 (2020).
Google Scholar
Westaway, K. E. et al. An early modern human presence in Sumatra 73000–63000 years ago. Nature 548, 322–325 (2017).
Google Scholar
Bacon, A.-M. et al. Late Pleistocene mammalian assemblages of Southeast Asia: New dating, mortality profiles and evolution of the predator-prey relationships in an environmental context. Palaeogeogr. Palaeoclimatol. Palaeoecol. 422, 101–127 (2015).
Google Scholar
Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl. Acad. Sci. USA 117, 4675–4681 (2020).
Google Scholar
Bacon, A.-M. et al. A rhinocerotid-dominated megafauna at the MIS6-5 transition: The late Middle Pleistocene Coc Muoi assemblage, Lang Son province, Vietnam. Quat. Sci. Rev. 186, 123–141 (2018).
Google Scholar
Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited: Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144 (2018).
Google Scholar
Suraprasit, K., Jongauttchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 105861 (2019).
Google Scholar
Sun, F. et al. Paleoecology of Pleistocene mammals and paleoclimatic change in South China: Evidence from stable carbon and oxygen isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 1–12 (2019).
Google Scholar
Demeter, F. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proc. Natl. Acad. Sci. USA 109, 14375–14380 (2012).
Google Scholar
Shackelford, L. et al. Additional evidence for early modern human morphological diversity in Southeast Asia at Tam Pà Ling, Laos. Quat. Int. 466, 93–106 (2018).
Google Scholar
Petraglia, M. D., Breeze, P. S. & Groucutt, H. S. Blue Arabia: Examining colonisation and dispersal models. In Geological setting, Palaeoenvironment and Archaeology of the Red Sea (eds Rasul, N. M. A. & Stewart, I. C. F.) 675–683 (Springer International Publishing, 2019).
Google Scholar
Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).
Google Scholar
Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2019).
Google Scholar
Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020).
Google Scholar
Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379 (2007).
Google Scholar
Rink, W. J., Wei, W., Bekken, D. & Jones, H. L. Geochronology of Ailuropoda-Stegodon fauna and Gigantopithecus in Guangxi Province, Southern China. Quat. Res. 69, 377–387 (2008).
Google Scholar
Norton, C. J., Jin, C., Wang, Y. & Zhang, Y. Rethinking the ¨Palearctic-Oriental biogeographic boundary in Quaternary China. In Asian Paleoanthropology: From Africa to China and Beyond (eds Norton, C. J. & Braun, D. R.) 81–100 (Vertebrate Paleobiology and Paleoanthropology, 2010).
Turvey, S. T., Tong, H., Stuart, A. J. & Lister, A. M. Holocene survival of Late Pleistocene megafauna in China: A critical review of the evidence. Quat. Sci. Rev. 76, 156–166 (2013).
Google Scholar
Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167 (2017).
Google Scholar
Owen-Smith, R. N. Megaherbivores. The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1988).
Google Scholar
Louys, J. & Meijaard, E. Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J. Biogeography 37, 1432–1449 (2010).
Graham, R. W. Diversity and community structure of the late Pleistocene mammal fauna of North America. Acta Zool. Fenn. 170, 181–192 (1985).
Graham, R. W. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).
Google Scholar
Price, G. J. Fossil bandicoots (Marsupiala, Peramelidae) and environmental change during the Pleistocene on the Darling Downs, Southern Queensland, Australia. J. Syst. Palaeontol. 2, 347–356 (2004).
Google Scholar
Stewart, J. R. The progressive effect of the individualistic response of species to Quaternary climate change: An analysis of British mammalian faunas. Quat. Sci. Rev. 27, 2499–2508 (2008).
Google Scholar
Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl. Acad. Sci. USA 116, 21478–21483 (2019).
Google Scholar
Zeitoun, V., Chinnawut, W., Debruyne, R., Frère, S. & Auetrakulvit, P. A sustainable review of the Middle Pleistocene benchmark sites including the Ailuropoda-Stegodon faunal complex: The Proboscidean point of view. Quat. Int. 416, 12–26 (2010).
Google Scholar
Jablonski, D. & Sepkoski, J. J. Jr. Paleobiology, community ecology and scales of ecological patterns. Ecology 77, 1367–1378 (1996).
Google Scholar
Graham, R. W. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. In Paleobiogeography: Generating New Insights Into the Coevolution of the Earth and Its Biota (eds Lieberman, B. S. & Stigall, A. L.) 141–157 (Paleontological Society Papers, 2005).
Stewart, J. R. The evolutionary consequence of the individualistic response to climate change. J. Evol. Biol. 22, 2363–2375 (2009).
Google Scholar
Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 19, R584–R594 (2009).
Google Scholar
Tougard, C. & Montuire, S. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: Focus on fossil faunas from Thailand. Quat. Sci. Rev. 25, 126–141 (2006).
Google Scholar
Zeitoun, V. et al. Dating, stratigraphy and taphonomy of the Pleistocene site of Ban Fa Suai II (Northern Thailand): Contributions to the study of paleobiodiversity in Southeast Asia. Ann. Paléontol. 105, 275–285 (2019).
Google Scholar
Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
Google Scholar
Bennett, K. D. & Provan, J. What do we mean by refugia? Quat. Sci. Rev. 27, 2449–2455 (2008).
Google Scholar
Leonard, J. A., Wayne, R. K. & Cooper, A. Population genetics of Ice Age brown bears. Proc. Natl. Acad. Sci. USA 97, 1651–1654 (2000).
Google Scholar
Leonard, J. A. et al. Megafaunal extinctions and the disappearance of a specialized wolf ectomorph. Curr. Biol. 17, 1146–1150 (2007).
Google Scholar
Barnes, I., Matheus, P., Shapiro, B., Jensen, D. & Cooper, A. Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295, 2267–2270 (2002).
Google Scholar
Hofreiter, M. et al. Lack of phylogeography in European mammals before the last glaciation. Proc. Natl. Acad. Sci. USA 35, 12963–12968 (2004).
Google Scholar
Shapiro, B. et al. Rise and Fall of the Beringian Steppe Bison. Science 306, 1561–1565 (2004).
Google Scholar
Rohland, N. et al. The population history of extant and extinct hyenas. Mol. Biol. Evol. 22, 2435–2443 (2005).
Google Scholar
Gilbert, M. T. P. et al. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc. Natl. Acad. Sci. USA 105, 8327–8332 (2008).
Google Scholar
Orlando, L. et al. Revising the recent evolutionary history of equids using ancient DNA. Proc. Natl. Acad. Sci. USA 106, 21754–21759 (2009).
Google Scholar
Campos, P. F. et al. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc. Natl. Acad. Sci. USA 107, 5675–5680 (2010).
Google Scholar
Campos, P. F. et al. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene. Mol. Ecol. 19, 4863–4875 (2010).
Google Scholar
Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–365 (2011).
Google Scholar
Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 29, 1596–1610 (2019).
Google Scholar
Lord, E. et al. Pre-extinction demographic stability and genomic signatures of adaptation in the woolly rhinoceros. Curr. Biol. 30, 3871–3879 (2020).
Google Scholar
Lister, A. M. The impact of Quaternary Ice Ages on mammalian evolution. Phil. Trans. R. Soc. Lond. B 359, 221–241 (2004).
Google Scholar
Barnosky, A. D. Effects of Quaternary climatic change on speciation in mammals. J. Mammal. Evol. 12, 247–264 (2005).
Google Scholar
Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B 277, 661–671 (2010).
Google Scholar
Pushkina, D., Bocherens, H., Chaimanee, Y. & Jeager, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake cave in northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).
Google Scholar
Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jeager, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).
Google Scholar
Suraprasit, K. et al. Long-term isotope evidence on the diet and habitat breadth of Pleistocene to Holocene caprines in Thailand: Implications for the extirpation and conservation of Himalayan gorals. Front. Ecol. Evol. 8, 1–16 (2020).
Google Scholar
Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals: Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).
Google Scholar
Stacklyn, S. et al. Carbon and oxygen isotopic evidence for diets, environments and niche differentiation of early Pleistocene pandas and associated mammals in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 351–361 (2017).
Google Scholar
Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).
Google Scholar
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 40, 503–537 (1989).
Google Scholar
van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).
Google Scholar
Zazzo, A. et al. Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology 26, 294–309 (2000).
Google Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
Google Scholar
Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta 48, 385–390 (1984).
Google Scholar
Luz, B., Kolodny, Y. & Horowitz, M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48, 1689–1693 (1984).
Google Scholar
Fricke, H. C., Clyde, W. C. & O’Neil, J. R. Intra-tooth variations in δ 18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochim. Cosmochim. Acta 62, 1839–1850 (1998).
Google Scholar
Fricke, H. C., Clyde, W. C., O’Neil, J. R. & Gingerich, P. D. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet. Sci. Lett. 160, 193–208 (1998).
Google Scholar
Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).
Google Scholar
Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).
Google Scholar
Kohn, M. J. & Cerling, T. E. Stable isotope compositions of biological apatite. Rev. Mineral. Geochem. 48, 455–488 (2002).
Google Scholar
Zheng, Z. & Lei, Z.-Q. A 400,000 years record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 339–362 (1999).
Google Scholar
Li, S.-P. et al. Pleistocene vegetation in Guangxi, south China, based on palynological data from seven karst caves. Grana 59, 94–106 (2020).
Google Scholar
Wang, Y. et al. Millenial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008).
Google Scholar
Chen, H. et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34, 217–220 (2006).
Google Scholar
Kelly, M. J. et al. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 20–38 (2006).
Google Scholar
Milano, S. et al. Environmental conditions framing the first evidence of modern humans at Tam Pà Ling, Laos: A stable isotope record from terrestrial gastropod carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 511, 352–363 (2018).
Google Scholar
Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular southeast Asia during the last glacial period: A savanna corridor in Sundaland? Quat. Sci. Rev. 24, 228–242 (2005).
Google Scholar
Marwick, B. & Gagan, M. K. Late Pleistocene monsoon variability in northwest Thailand: An oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quat. Sci. Rev. 30, 3088–3098 (2011).
Google Scholar
Geist, V. On the relationship of social evolution and ecology in ungulates. Am. Zool. 14, 205–220 (1974).
Google Scholar
Bacon, A.-M. et al. Testing the savannah corridor hypothesis during MIS2: The Boh Dambang hyena site in southern Cambodia. Quat. Int. 464, 417–439 (2018).
Google Scholar
Cannon, C. H., Robert, J., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbances. Proc. Natl. Acad. Sci. USA 106, 11188–11193 (2009).
Google Scholar
Yuan, D. et al. Timing, duration, and transitions of the Last Interglacial Asian monsoon. Science 304, 575–578 (2004).
Google Scholar
Hublin, J.-J. How old are the oldest Homo sapiens in Far East Asia? Proc. Natl. Acad. Sci. USA 118, e2101173118 (2021).
Google Scholar
Boivin, N., Fuller, D. Q., Dennell, R., Allaby, R. & Petraglia, M. D. Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quat. Int. 300, 32–47 (2013).
Google Scholar
Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-Iena rockshelter, Sri Lanka. J. Hum. Evol. 61, 254–269 (2011).
Google Scholar
Roberts, P., Boivin, N., Lee-Thorp, J., Petraglia, M. & Stock, J. Tropical forests and the genus Homo. Evol. Anthropol. 25, 306–317 (2016).
Google Scholar
Roberts, P. & Petraglia, M. D. Pleistocene rainforests: Barriers or attractive environments for early human foragers? World Archaeol. 47, 718–739 (2015).
Google Scholar
Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739 (2019).
Google Scholar
Barker, G. et al. The “human revolution” in lowland tropical Southeast Asia: The antiquity and behavior of anatomically modern humans at Niah cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).
Google Scholar
Piper, P. J. & Rabett, R. J. Hunting in a tropical rainforest: Evidence from the terminal Pleistocene at Lobang Hangus, Niah caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).
Google Scholar
Mellars, P. Going East: New genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 313, 796–800 (2006).
Google Scholar
Posth, C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial populations turnover in Europe. Curr. Biol. 26, 827–833 (2016).
Google Scholar
Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).
Google Scholar
Zachwieja, A. J. et al. Understanding Late Pleistocene human land preference using ecological niche models in an Australasian test case. Quat. Int. 563, 13–28 (2020).
Google Scholar
Shea, J. J. Homo sapiens is as Homo sapiens was: Behavioral variability versus “behavioral modernity” in Paleolithic archaeology. Curr. Anthropol. 52, 1–35 (2011).
Google Scholar
Sun, X.-F. et al. Ancient DNA and multimethod dating confirm the late arrival of anatomically modern humans in southern China. Proc. Natl. Acad. Sci. USA 118, e2019158118 (2021).
Google Scholar
Martinón-Torres, M. et al. On the misidentification and unreliable context of the new “human teeth” from Fuyan Cave (China). Proc. Natl. Acad. Sci. USA 118, e2102961118 (2021).
Google Scholar
Timmerman, A. & Friedrich, F. T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).
Google Scholar
Kealy, S., Louys, J. & O’Connor, S. Least-cost pathway models indicate northern human dispersal from Sunda to Sahul. J. Hum. Evol. 125, 59–70 (2018).
Google Scholar
De Deckker, P. et al. Marine Isotope Stage 4 in Australasia: A full glacial culminating 65,000 years ago: Global connections and implications for human dispersal. Quat. Sci. Rev. 204, 187–207 (2019).
Google Scholar
Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).
Google Scholar
O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul?. Proc. Natl. Acad. Sci. USA 115, 8482–8490 (2018).
Google Scholar
Brain, C. K. The Hunters and the Hunted? An Introduction to African Cave Taphonomy (The University of Chicago press, 1981).
Lucchini, V., Meijaard, E., Diong, C. H., Groves, C. P. & Randi, E. New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. J. Zool. Lond. 266, 25–35 (2006).
Google Scholar
Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006).
Google Scholar
Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl. Acad. Sci. USA 112, 11467–11472 (2015).
Google Scholar
Tejada-Lara, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. USA 117, 26263–26272 (2020).
Google Scholar
Kohn, M. J. Carbon isotope compositions of terrestrial C3 Plants as Indicators of (Paleo)ecology and (Paleo)climate. Proc. Natl. Acad. Sci. USA 107, 19691–19695 (2010).
Google Scholar
Source: Ecology - nature.com