Chen, J., Sun, S., Li, C. Z., Zhu, Y. G. & Rosen, B. P. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol. 48, 1141 (2014).
Google Scholar
Ghosh, N. & Singh, R. Groundwater Arsenic Contamination in India: Vulnerability and Scope for Remedy (National Institute of Hydrology, 2009).
Luong, J. H. T., Lam, E. & Male, K. B. Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal. Methods 6, 6157 (2014).
Google Scholar
Naujokas, M. F. et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 121, 295 (2013).
Google Scholar
Ahmad, S. A., Khan, M. H. & Haque, M. Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Manage. Healthcare Policy 11, 251 (2018).
Google Scholar
Sultana, M. et al. Investigation of arsenotrophic microbiome in arsenic-affected Bangladesh groundwater. Groundwater 55, 736 (2017).
Google Scholar
Shakoor, M. B. et al. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 46, 467 (2016).
Google Scholar
Natasha, et al. Arsenic environmental contamination status in South Asia. Arsenic Drink. Water Food. https://doi.org/10.1007/978-981-13-8587-2_2 (2020).
Google Scholar
Choudhury, M. I. M. et al. Cutaneous malignancy due to arsenicosis in Bangladesh: 12-year study in tertiary level hospital. Biomed. Res. Int. 2018, 4678362 (2018).
Google Scholar
Arsenic—Banglapedia. https://en.banglapedia.org/index.php/Arsenic. (Accessed 28 June 2021)
Arsenic Contamination in Water: No proper study done in years|The Daily Star. https://www.thedailystar.net/backpage/news/arsenic-contamination-water-no-proper-study-done-years-2064585. (Accessed 19 June 2021)
Martinez, V. D., Vucic, E. A., Becker-Santos, D. D., Gil, L. & Lam, W. L. Arsenic exposure and the induction of human cancers. J. Toxicol. 2011, 431287 (2011).
Google Scholar
Argos, M. et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 376, 252 (2010).
Google Scholar
Mujawar, S. Y., Shamim, K., Vaigankar, D. C. & Dubey, S. K. Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. Biometals 32, 65 (2019).
Google Scholar
Masscheleyn, P. H., Delaune, R. D. & Patrick, W. H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25, 1414 (1991).
Google Scholar
Jain, C. K. & Ali, I. Arsenic: Occurrence, toxicity and speciation techniques. Water Res. 34, 4304 (2000).
Google Scholar
Garelick, H., Dybowska, A., Valsami-Jones, E. & Priest, N. D. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments 5, 182 (2005).
Google Scholar
Kruger, M. C., Bertin, P. N., Heipieper, H. J. & Arsène-Ploetze, F. Bacterial metabolism of environmental arsenic—Mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 97, 3827 (2013).
Google Scholar
Rahman, A. et al. Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J. Environ. Sci. Health A 49, 1349 (2014).
Google Scholar
Halttunen, T., Finell, M. & Salminen, S. Arsenic removal by native and chemically modified lactic acid bacteria. Int. J. Food Microbiol. 120, 173 (2007).
Google Scholar
Mondal, P., Majumder, C. B. & Mohanty, B. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J. Basic Microbiol. 48, 521 (2008).
Google Scholar
Banerjee, S., Datta, S., Chattyopadhyay, D. & Sarkar, P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Health A 46, 1736 (2011).
Google Scholar
Bahar, M. M., Megharaj, M. & Naidu, R. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23, 803 (2012).
Google Scholar
Lozano, L. C. & Dussán, J. Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World J. Microbiol. Biotechnol. 29, 1383 (2013).
Google Scholar
Corsini, A. et al. Characterization of As(III) oxidizing Achromobacter sp. strain N2: Effects on arsenic toxicity and translocation in rice. Ann. Microbiol. 68, 295 (2018).
Google Scholar
Istiaq, A. et al. Adaptation of metal and antibiotic resistant traits in novel β-Proteobacterium Achromobacter xylosoxidans BHW-15. PeerJ 2019, e6537 (2019).
Google Scholar
Hamamura, N. et al. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environ. Microbiol. Rep. 6, 476 (2014).
Google Scholar
Ehrlich, H. L., Newman, D. K. & Kappler, A. Geomicrobiology (CRC Press, 2008).
Google Scholar
Bahar, M. M., Megharaj, M. & Naidu, R. Bioremediation of arsenic-contaminated water: Recent advances and future prospects. Water Air Soil Pollut. 224, 1–20 (2013).
Google Scholar
Hamamura, N. et al. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ. Microbiol. 11, 421 (2009).
Google Scholar
Hamamura, N. Distribution of aerobic arsenite oxidase genes within the aquificales. In Tokyo: TERRAPUB, 47–55 (2010).
Andreoni, V. et al. Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: Detection of genes involved in arsenite oxidation and CO2 fixation. Curr. Microbiol. 65, 212 (2012).
Google Scholar
Lett, M. C., Muller, D., Lièvremont, D., Silver, S. & Santini, J. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J. Bacteriol. 194, 207 (2012).
Google Scholar
Zargar, K. et al. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14, 1635 (2012).
Google Scholar
Engel, A. S., Johnson, L. R. & Porter, M. L. Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser field, Chile. FEMS Microbiol. Ecol. 83, 745 (2013).
Google Scholar
Drewniak, L. & Sklodowska, A. Arsenic-transforming microbes and their role in biomining processes. Environ. Sci. Pollut. Res. 20, 7728 (2013).
Google Scholar
Jiang, Z. et al. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China. Extremophiles 18, 161 (2014).
Google Scholar
Wu, G. et al. Distribution of arsenite-oxidizing bacteria and its correlation with temperature in hot springs of the Tibetan-Yunnan geothermal zone in western China. Geomicrobiol. J. 32, 482 (2015).
Google Scholar
Hernandez-Maldonado, J. et al. The genetic basis of anoxygenic photosynthetic arsenite oxidation. Environ. Microbiol. 19, 130 (2017).
Google Scholar
Rahman, M. M., Hussain, M. M. & Asiri, A. M. A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Adv. 6, 65338 (2016).
Google Scholar
Rahman, M. M., Hussain, M. M. & Asiri, A. M. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. PLoS ONE 12, e0177817 (2017).
Google Scholar
Hussain, M. M., Rahman, M. M. & Asiri, A. M. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J. Environ. Sci. (China) 53, 27 (2017).
Google Scholar
Pous, N. et al. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater. J. Hazard. Mater. 283, 617 (2015).
Google Scholar
Watanabe, T., Kojima, H. & Fukui, M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: Genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst. Appl. Microbiol. 37, 387 (2014).
Google Scholar
Mandal, B. Arsenic round the world: A review. Talanta 58, 201 (2002).
Google Scholar
Mukhopadhyay, R., Rosen, B. P., Phung, L. T. & Silver, S. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26, 311 (2002).
Google Scholar
Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795 (2002).
Google Scholar
Purakayastha, T. J. Detoxification of Heavy Metals (Springer, 2011).
Silver, S. & Phung, L. T. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50, 753 (1996).
Google Scholar
Agarwal, M., Rathore, R. S. & Chauhan, A. A rapid and high throughput MIC determination method to screen uranium resistant microorganisms. Methods Protoc. 3(1), 21. https://doi.org/10.3390/mps3010021 (2020).
Google Scholar
Johnson, D. B., Okibe, N. & Roberto, F. F. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: Physiological and phylogenetic characteristics. Arch. Microbiol. 180, 60 (2003).
Google Scholar
Cai, L., Liu, G., Rensing, C. & Wang, G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9, 1–11 (2009).
Google Scholar
Achour, A. R., Bauda, P. & Billard, P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 158, 128 (2007).
Google Scholar
Cervantes, C., Ji, G., Ramirez, J. & Silver, S. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15, 355 (1994).
Google Scholar
Majumder, A., Ghosh, S., Saha, N., Kole, S. C. & Sarkar, S. Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J. Environ. Biol. 34, 841 (2013).
Google Scholar
Takeuchi, M. et al. Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 127, 434 (2007).
Google Scholar
Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713 (2009).
Google Scholar
Pandey, N. & Bhatt, R. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J. Basic Microbiol. 55, 1275 (2015).
Google Scholar
Zolgharnein, H., Karami, K., Assadi, M. M. & Sohrab, A. D. Molecular characterization and phylogenetic analyses of heavy metal removal bacteria from the Persian gulf. Biotechnology 9, 1–8 (2010).
Google Scholar
Valenzuela, C. et al. Arsenite oxidation by Pseudomonas arsenicoxydans immobilized on zeolite and its potential biotechnological application. Bull. Environ. Contam. Toxicol. 94, 667 (2015).
Google Scholar
Li, X. et al. Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8. J. Bacteriol. 194, 1243 (2012).
Google Scholar
Fan, H. et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J. Appl. Microbiol. 105, 529 (2008).
Google Scholar
Liu, G. et al. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation. Environ. Microbiol. 14, 1624 (2012).
Google Scholar
Yan, G. et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 65, 329 (2019).
Google Scholar
Wang, G., Huang, Y. & Li, J. Bacteria live on arsenic analysis of microbial arsenic metabolism—A review. Acta Microbiol. Sin. 51, 154 (2011).
Google Scholar
Rosen, B. P. Biochemistry of arsenic detoxification. FEBS Lett. 529, 86 (2002).
Google Scholar
Jahid, I. K., Lee, N. Y., Kim, A. & Ha, S. D. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in aeromonas hydrophila. J. Food Prot. 76, 239 (2013).
Google Scholar
Hassan, Z. et al. Ample arsenite bio-oxidation activity in Bangladesh drinking water wells: A bonanza for bioremediation? Microorganisms 7, 246 (2019).
Google Scholar
Dhar, R. K., Zheng, Y., Rubenstone, J. & Van Geen, A. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta 526, 203 (2004).
Google Scholar
Cummings, D. E., Caccavo, F., Fendorf, S. & Rosenzweig, R. F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 33, 723 (1999).
Google Scholar
Geetanjali, P. & Bhosale, S. P. B. Isolation and characterization of arsenate reducing bacteria from the waste water of an electroplating industry. Int. J. Curr. Microbiol. Appl. Sci. 3, 444–452 (2014).
Sanyal, S. K. et al. Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express 6, 1–11 (2016).
Google Scholar
Kumar, S., Stecher, G., Tamura, K. & Dudley, J. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol 33, 1870–1874 (2016).
Google Scholar
Khan, M. Z. H., Liu, X., Tang, Y. & Liu, X. Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens. Bioelectron. 117, 508 (2018).
Google Scholar
Source: Ecology - nature.com