in

Blue carbon as a natural climate solution

  • 1.

    Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).

    Article 

    Google Scholar 

  • 2.

    Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. 26, 6134–6155 (2020).

    Article 

    Google Scholar 

  • 3.

    Pires, J. C. M. Negative emissions technologies: a complementary solution for climate change mitigation. Sci. Total Environ. 672, 502–514 (2019).

    Article 

    Google Scholar 

  • 4.

    McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 90, 489–500 (2012).

    Article 

    Google Scholar 

  • 5.

    Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article 

    Google Scholar 

  • 6.

    Nellemann, C. et al. Blue Carbon — The Role of Healthy Oceans in Binding Carbon (UN Environment, 2009).

  • 7.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar 

  • 8.

    Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front. Mar. Sci. 5, 376 (2018).

    Article 

    Google Scholar 

  • 9.

    Friess, D. A. et al. in Oceanography and Marine Biology Vol. 58 Ch. 3 (CRC, 2020).

  • 10.

    Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15 https://doi.org/10.1098/rsbl.2018.0781 (2019).

  • 11.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).

    Article 

    Google Scholar 

  • 12.

    Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    Article 

    Google Scholar 

  • 13.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • 14.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    Article 

    Google Scholar 

  • 15.

    Macreadie, P. I. et al. Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen. Sci. Total Environ. 686, 264–275 (2019).

    Article 

    Google Scholar 

  • 16.

    Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Mangrove mortality in a changing climate: an overview. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).

    Article 

    Google Scholar 

  • 17.

    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).

    Article 

    Google Scholar 

  • 18.

    Zhao, Q. et al. Where marine protected areas would best represent 30% of ocean biodiversity. Biol. Conserv. 244, 108536 (2020).

    Article 

    Google Scholar 

  • 19.

    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article 

    Google Scholar 

  • 20.

    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Article 

    Google Scholar 

  • 21.

    Van, T. T. et al. Changes in mangrove vegetation area and character in a war and land use change affected region of Vietnam (Mui Ca Mau) over six decades. Acta Oecol. 63, 71–81 (2015).

    Article 

    Google Scholar 

  • 22.

    Dung, L. V., Tue, N. T., Nhuan, M. T. & Omori, K. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. For. Ecol. Manage. 380, 31–40 (2016).

    Article 

    Google Scholar 

  • 23.

    Nam, V. N., Sasmito, S. D., Murdiyarso, D., Purbopuspito, J. & MacKenzie, R. A. Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetl. Ecol. Manag. 24, 231–244 (2016).

    Article 

    Google Scholar 

  • 24.

    Reynolds, L. K., Waycott, M., McGlathery, K. J. & Orth, R. J. Ecosystem services returned through seagrass restoration. Restor. Ecol. 24, 583–588 (2016).

    Article 

    Google Scholar 

  • 25.

    Das, S. Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev. 94, 492–502 (2017).

    Article 

    Google Scholar 

  • 26.

    Kiesel, J. et al. Effective design of managed realignment schemes can reduce coastal flood risks. Estuar. Coast. Shelf Sci. 242, 106844 (2020).

    Article 

    Google Scholar 

  • 27.

    McNally, C. G., Uchida, E. & Gold, A. J. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems. Proc. Natl Acad. Sci. USA 108, 13945–13950 (2011).

    Article 

    Google Scholar 

  • 28.

    Chow, J. Mangrove management for climate change adaptation and sustainable development in coastal zones. J. Sustain. For. 37, 139–156 (2018).

    Article 

    Google Scholar 

  • 29.

    Dasgupta, S., Islam, M. S., Huq, M., Huque Khan, Z. & Hasib, M. R. Quantifying the protective capacity of mangroves from storm surges in coastal Bangladesh. PLoS ONE 14, e0214079 (2019).

    Article 

    Google Scholar 

  • 30.

    Sutton-Grier, A. E. & Moore, A. Leveraging carbon services of coastal ecosystems for habitat protection and restoration. Coast. Manag. 44, 259–277 (2016).

    Article 

    Google Scholar 

  • 31.

    Owuor, M. A., Mulwa, R., Otieno, P., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: a deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040 (2019).

    Article 

    Google Scholar 

  • 32.

    Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2018).

    Article 

    Google Scholar 

  • 33.

    Bunting, P. et al. The global mangrove watch — a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Article 

    Google Scholar 

  • 34.

    Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Conserv. 226, 120–126 (2018).

    Article 

    Google Scholar 

  • 35.

    McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 74041 (2020).

    Article 

    Google Scholar 

  • 36.

    Trumbore, S. E. Potential responses of soil organic carbon to global environmental change. Proc. Natl Acad. Sci. USA 94, 8284–8291 (1997).

    Article 

    Google Scholar 

  • 37.

    Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240–244 (2018).

    Article 

    Google Scholar 

  • 38.

    Ouyang, X. & Lee, S. Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 11, 317 (2020).

    Article 

    Google Scholar 

  • 39.

    Kauffman, J. B. et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90, e01405 (2020).

    Article 

    Google Scholar 

  • 40.

    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

    Article 

    Google Scholar 

  • 41.

    Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).

    Article 

    Google Scholar 

  • 42.

    Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).

    Article 

    Google Scholar 

  • 43.

    Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 55002 (2018).

    Article 

    Google Scholar 

  • 44.

    Traganos, D. et al. Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: the case study of the Aegean and Ionian Seas. Remote Sens. 10, 1227 (2018).

    Article 

    Google Scholar 

  • 45.

    Hossain, M. S. & Hashim, M. Potential of Earth Observation (EO) technologies for seagrass ecosystem service assessments. Int. J. Appl. Earth Obs. Geoinf. 77, 15–29 (2019).

    Article 

    Google Scholar 

  • 46.

    Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).

    Article 

    Google Scholar 

  • 47.

    Coastal carbon atlas. Coastal Carbon Research Coordination Network. CCRCN https://ccrcn.shinyapps.io/CoastalCarbonAtlas/_w_8595a9b5/#tab-6425-6 (2019).

  • 48.

    UNEP-WCMC. Ocean data viewer: global distribution of seagrasses. UNEP https://doi.org/10.34892/x6r3-d211 (2018).

  • 49.

    Hammerstrom, K. K., Kenworthy, W. J., Fonseca, M. S. & Whitfield, P. E. Seed bank, biomass, and productivity of Halophila decipiens, a deep water seagrass on the west Florida continental shelf. Aquat. Bot. 84, 110–120 (2006).

    Article 

    Google Scholar 

  • 50.

    Pergent-Martini, C. et al. Descriptors of Posidonia oceanica meadows: use and application. Ecol. Indic. 5, 213–230 (2005).

    Article 

    Google Scholar 

  • 51.

    Esteban, N., Unsworth, R. K. F., Gourlay, J. B. Q. & Hays, G. C. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles. Mar. Pollut. Bull. 134, 99–105 (2018).

    Article 

    Google Scholar 

  • 52.

    York, P. H. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167 (2015).

    Article 

    Google Scholar 

  • 53.

    Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    Article 

    Google Scholar 

  • 54.

    Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, 1111 (2003).

    Article 

    Google Scholar 

  • 55.

    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 

    Google Scholar 

  • 56.

    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    Article 

    Google Scholar 

  • 57.

    Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538 (2018).

    Article 

    Google Scholar 

  • 58.

    Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 14652 (2020).

    Article 

    Google Scholar 

  • 59.

    Maher, D. T., Call, M., Santos, I. R. & Sanders, C. J. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett. 14, 20180200 (2018).

    Article 

    Google Scholar 

  • 60.

    Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Ocean 64, 996–1013 (2019).

    Article 

    Google Scholar 

  • 61.

    Kelleway, J. J. et al. A national approach to greenhouse gas abatement through blue carbon management. Glob. Environ. Chang. 63, 102083 (2020).

    Article 

    Google Scholar 

  • 62.

    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 68, 5844–5855 (2020).

    Article 

    Google Scholar 

  • 63.

    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016).

    Article 

    Google Scholar 

  • 64.

    Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).

    Article 

    Google Scholar 

  • 65.

    Worthington, T. & Spalding, M. Mangrove restoration potential: a global map highlighting a critical opportunity (OECD, 2018).

  • 66.

    Kearney, M. S., Riter, J. C. A. & Turner, R. E. Freshwater river diversions for marsh restoration in Louisiana: twenty-six years of changing vegetative cover and marsh area. Geophys. Res. Lett. 38, 16405 (2011).

    Article 

    Google Scholar 

  • 67.

    Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870–872 (2019).

    Article 

    Google Scholar 

  • 68.

    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135 (2019).

    Article 

    Google Scholar 

  • 69.

    Herr, D., Blum, J., Himes-Cornell, A. & Sutton-Grier, A. An analysis of the potential positive and negative livelihood impacts of coastal carbon offset projects. J. Environ. Manag. 235, 463–479 (2019).

    Article 

    Google Scholar 

  • 70.

    Mojica Vélez, J. M., Barrasa García, S. & Espinoza Tenorio, A. Policies in coastal wetlands: key challenges. Environ. Sci. Policy 88, 72–82 (2018).

    Article 

    Google Scholar 

  • 71.

    Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Chang. 10, 842–844 (2020).

    Article 

    Google Scholar 

  • 72.

    van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).

    Article 

    Google Scholar 

  • 73.

    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    Article 

    Google Scholar 

  • 74.

    Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996 (2006).

    Article 

    Google Scholar 

  • 75.

    Tan, Y. M. et al. Seagrass restoration is possible: insights and lessons from Australia and New Zealand. Front. Mar. Sci. 7, 617 (2020).

    Article 

    Google Scholar 

  • 76.

    Greiner, J. T., McGlathery, K. J., Gunnell, J. & McKee, B. A. Seagrass restoration enhances ‘blue carbon’ sequestration in coastal waters. PLoS ONE 8, e72469 (2013).

    Article 

    Google Scholar 

  • 77.

    Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).

    Article 

    Google Scholar 

  • 78.

    Cunha, A. H. et al. Changing paradigms in seagrass restoration. Restor. Ecol. 20, 427–430 (2012).

    Article 

    Google Scholar 

  • 79.

    Rezek, R. J., Furman, B. T., Jung, R. P., Hall, M. O. & Bell, S. S. Long-term performance of seagrass restoration projects in Florida, USA. Sci. Rep. 9, 15514 (2019).

    Article 

    Google Scholar 

  • 80.

    Worthington, T. A. et al. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2, 429–443 (2020).

    Article 

    Google Scholar 

  • 81.

    Kandus, P. et al. Remote sensing of wetlands in South America: status and challenges. Int. J. Remote Sens. 39, 993–1016 (2018).

    Article 

    Google Scholar 

  • 82.

    Gallant, A. L. The challenges of remote monitoring of wetlands. Remote Sens. 7, 10938–10950 (2015).

    Article 

    Google Scholar 

  • 83.

    Unsworth, R. K. F. et al. Sowing the seeds of seagrass recovery using hessian bags. Front. Ecol. Evol. 7, 311 (2019).

    Article 

    Google Scholar 

  • 84.

    Duarte, C. M., Dennison, W. C., Orth, R. J. W. & Carruthers, T. J. B. The charisma of coastal ecosystems: addressing the imbalance. Estuaries Coasts 31, 233–238 (2008).

    Article 

    Google Scholar 

  • 85.

    de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).

    Article 

    Google Scholar 

  • 86.

    Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    Article 

    Google Scholar 

  • 87.

    Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    Article 

    Google Scholar 

  • 88.

    Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).

    Article 

    Google Scholar 

  • 89.

    Cardoso, P. G., Raffaelli, D. & Pardal, M. A. The impact of extreme weather events on the seagrass Zostera noltii and related Hydrobia ulvae population. Mar. Pollut. Bull. 56, 483–492 (2008).

    Article 

    Google Scholar 

  • 90.

    Rogers, K. Accommodation space as a framework for assessing the response of mangroves to relative sea-level rise. Singap. J. Trop. Geogr. 42, 163–183 (2021).

    Article 

    Google Scholar 

  • 91.

    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).

    Article 

    Google Scholar 

  • 92.

    Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R. & Orth, R. J. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Chang. Biol. 23, 3474–3483 (2017).

    Article 

    Google Scholar 

  • 93.

    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8, 338–344 (2018).

    Article 

    Google Scholar 

  • 94.

    Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 455 (2019).

    Article 

    Google Scholar 

  • 95.

    Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).

    Article 

    Google Scholar 

  • 96.

    Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15, 64010 (2020).

    Article 

    Google Scholar 

  • 97.

    Asbridge, E., Lucas, R., Rogers, K. & Accad, A. The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecol. Evol. 8, 10416–10434 (2018).

    Article 

    Google Scholar 

  • 98.

    Hickey, S. M. et al. Is climate change shifting the poleward limit of mangroves? Estuaries Coasts 40, 1215–1226 (2017).

    Article 

    Google Scholar 

  • 99.

    Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A. & Krauss, K. W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Chang. Biol. 20, 147–157 (2014).

    Article 

    Google Scholar 

  • 100.

    Whitt, A. A. et al. March of the mangroves: drivers of encroachment into southern temperate saltmarsh. Estuar. Coast. Shelf Sci. 240, 106776 (2020).

    Article 

    Google Scholar 

  • 101.

    Cavanaugh, K. C. et al. Sensitivity of mangrove range limits to climate variability. Glob. Ecol. Biogeogr. 27, 925–935 (2018).

    Article 

    Google Scholar 

  • 102.

    Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).

    Article 

    Google Scholar 

  • 103.

    Coldren, G. A., Langley, J. A., Feller, I. C. & Chapman, S. K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 107, 79–90 (2019).

    Article 

    Google Scholar 

  • 104.

    Yando, E. S. et al. Salt marsh–mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. J. Ecol. 104, 1020–1031 (2016).

    Article 

    Google Scholar 

  • 105.

    Doughty, C. L. et al. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 39, 385–396 (2016).

    Article 

    Google Scholar 

  • 106.

    Lovelock, C. E. et al. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 153, 1–9 (2015).

    Article 

    Google Scholar 

  • 107.

    Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 243–266 (2016).

    Article 

    Google Scholar 

  • 108.

    Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    Article 

    Google Scholar 

  • 109.

    Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    Article 

    Google Scholar 

  • 110.

    Nicholls, R. J. Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 14, 69–86 (2004).

    Article 

    Google Scholar 

  • 111.

    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    Article 

    Google Scholar 

  • 112.

    Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 27, 2856–2866 (2021).

    Article 

    Google Scholar 

  • 113.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article 

    Google Scholar 

  • 114.

    Friedlingstein, P. et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Article 

    Google Scholar 

  • 115.

    Morris, R. L., Boxshall, A. & Swearer, S. E. Climate-resilient coasts require diverse defence solutions. Nat. Clim. Chang. 10, 485–487 (2020).

    Article 

    Google Scholar 

  • 116.

    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    Article 

    Google Scholar 

  • 117.

    Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).

    Article 

    Google Scholar 

  • 118.

    Howard, J. F. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).

    Article 

    Google Scholar 

  • 119.

    Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oysters reefs. Ecol. Appl. 8, 128–140 (1998).

    Article 

    Google Scholar 

  • 120.

    Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327 (2020).

    Article 

    Google Scholar 

  • 121.

    Lester, S. E., Dubel, A. K., Hernan, G., McHenry, J. & Rassweiler, A. Spatial planning principles for marine ecosystem restoration. Front. Mar. Sci. 7, 328 (2020).

    Article 

    Google Scholar 

  • 122.

    Herr, D. & Landis, E. Coastal blue carbon ecosystems: opportunities for nationally determined contributions. Policy brief (IUCN, 2016).

  • 123.

    Apple Newsroom. Conserving mangroves, a lifeline for the world. Apple (22 April 2019) https://www.apple.com/newsroom/2019/04/conserving-mangroves-a-lifeline-for-the-world

  • 124.

    Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl Acad. Sci. USA 116, 12232–12237 (2019).

    Article 

    Google Scholar 

  • 125.

    Herr, D., von Unger, M., Laffoley, D. & McGivern, A. Pathways for implementation of blue carbon initiatives. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 116–129 (2017).

    Article 

    Google Scholar 

  • 126.

    Friess, D. A. et al. in Sustainable Development Goals: Their Impacts on Forests and People Ch. 14 (eds Katila, P. et al.) 445–481 (Cambridge Univ. Press, 2019).

  • 127.

    Waltham, N. J. et al. UN Decade on Ecosystem Restoration 2021–2030 — what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).

    Article 

    Google Scholar 

  • 128.

    Convention on Biological Diversity. Conference of the Parties Decision X/2: strategic plan for biodiversity 2011–2020. CBD https://www.cbd.int/decision/cop/?id=12268 (2011).

  • 129.

    United Nations. Transforming our world: the 2030 Agenda for Sustainable Development (UN, 2015).

  • 130.

    Brander, L. M. et al. The global costs and benefits of expanding marine protected areas. Mar. Policy 116, 103953 (2020).

    Article 

    Google Scholar 

  • 131.

    Howard, J. F. et al. The potential to integrate blue carbon into MPA design and management. Aquat. Conserv. 27, 100–115 (2017).

    Article 

    Google Scholar 

  • 132.

    Needelman, B. A. et al. The science and policy of the Verified Carbon Standard methodology for tidal wetland and seagrass restoration. Estuaries Coasts 41, 2159–2171 (2018).

    Article 

    Google Scholar 

  • 133.

    Michaelowa, A., Hermwille, L., Obergassel, W. & Butzengeiger, S. Additionality revisited: guarding the integrity of market mechanisms under the Paris Agreement. Clim. Policy 19, 1211–1224 (2019).

    Article 

    Google Scholar 

  • 134.

    Intergovernmental Panel on Climate Change. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands (IPCC, 2014).

  • 135.

    United Nations Environment Programme. Out of the blue: the value of seagrasses to the environment and to people (UNEP, 2020).

  • 136.

    Murdiyarso, D. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 5, 1089–1092 (2015).

    Article 

    Google Scholar 

  • 137.

    Jones, T. et al. Madagascar’s mangroves: quantifying nation-wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sens. 8, 106 (2016).

    Article 

    Google Scholar 

  • 138.

    Holmquist, J. R. et al. Uncertainty in United States coastal wetland greenhouse gas inventorying. Environ. Res. Lett. 13, 115005 (2018).

    Article 

    Google Scholar 

  • 139.

    Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G. & Jeffrey, L. C. iAMES: an inexpensive, automated methane ebullition sensor. Environ. Sci. Technol. 53, 6420–6426 (2019).

    Article 

    Google Scholar 

  • 140.

    Primavera, J. H. & Esteban, J. M. A. A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl. Ecol. Manag. 16, 345–358 (2008).

    Article 

    Google Scholar 

  • 141.

    Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. USA 112, 14295–14300 (2015).

    Article 

    Google Scholar 

  • 142.

    Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 14, 307–316 (2016).

    Article 

    Google Scholar 

  • 143.

    Burkholz, C., Garcias-Bonet, N. & Duarte, C. M. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments. Biogeosciences 17, 1717–1730 (2020).

    Article 

    Google Scholar 

  • 144.

    Bianchi, T. S. et al. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 119, 7–16 (2013).

    Article 

    Google Scholar 

  • 145.

    Apostolaki, E. T. et al. Exotic Halophila stipulacea is an introduced carbon sink for the eastern Mediterranean Sea. Sci. Rep. 9, 9643 (2019).

    Article 

    Google Scholar 

  • 146.

    Bell, J. & Lovelock, C. E. Insuring mangrove forests for their role in mitigating coastal erosion and storm-surge: an Australian case study. Wetlands 33, 279–289 (2013).

    Article 

    Google Scholar 

  • 147.

    Reguero, B. G. et al. Financing coastal resilience by combining nature-based risk reduction with insurance. Ecol. Econ. 169, 106487 (2020).

    Article 

    Google Scholar 

  • 148.

    Thomas, S. Blue carbon: knowledge gaps, critical issues, and novel approaches. Ecol. Econ. 107, 22–38 (2014).

    Article 

    Google Scholar 

  • 149.

    International Partnership for Blue Carbon. Blue carbon partnership. IPBC https://bluecarbonpartnership.org (2017).

  • 150.

    Boon, P. I. & Prahalad, V. Ecologists, economics and politics: problems and contradictions in applying neoliberal ideology to nature conservation in Australia. Pac. Conserv. Biol. 23, 115–132 (2017).

    Article 

    Google Scholar 

  • 151.

    Adame, M. F. et al. The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conserv. Lett. 11, e12445 (2018).

    Article 

    Google Scholar 

  • 152.

    Bell-James, J. & Lovelock, C. E. Legal barriers and enablers for reintroducing tides: an Australian case study in reconverting ponded pasture for climate change mitigation. Land Use Policy 88, 104192 (2019).

    Article 

    Google Scholar 

  • 153.

    Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).

    Article 

    Google Scholar 

  • 154.

    Saderne, V. et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 10, 1106 (2019).

    Article 

    Google Scholar 

  • 155.

    Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 4, 100 (2017).

    Google Scholar 

  • 156.

    Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 29, 3087–3093.e3 (2019).

    Article 

    Google Scholar 

  • 157.

    Ritchie, H. & Roser, M. CO2 and greenhouse gas emissions. Our World in Data https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (2017).

  • 158.

    Smith, S. V. Marine macrophytes as a global carbon sink. Science 211, 838–840 (1981).

    Article 

    Google Scholar 

  • 159.

    Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate (IPCC, 2019).

  • 160.

    Verified Carbon Standard. VM0007 REDD+ methodology framework (REDD+MF) (VCS, 2020).

  • 161.

    Carnell, P. E. et al. Mapping ocean wealth Australia: the value of coastal wetlands to people and nature. The Nature Conservancy https://doi.org/10.21153/carnell2019mapping (2019).

  • 162.

    Jänes, H. et al. Stable isotopes infer the value of Australia’s coastal vegetated ecosystems from fisheries. Fish Fish. 21, 80–90 (2020).

    Article 

    Google Scholar 

  • 163.

    Jänes, H. et al. Quantifying fisheries enhancement from coastal vegetated ecosystems. Ecosyst. Serv. 43, 101105 (2020).

    Article 

    Google Scholar 

  • 164.

    Huang, B. et al. Quantifying welfare gains of coastal and estuarine ecosystem rehabilitation for recreational fisheries. Sci. Total Environ. 710, 134680 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi)

    Terrestrial connectivity, upstream aquatic history and seasonality shape bacterial community assembly within a large boreal aquatic network