in

Gamma diversity and under-sampling together generate patterns in beta-diversity

  • 1.

    Cornell, H. V. & Harrison, S. P. What are species pools and when are they important?. Annu. Rev. Ecol. Evol. Syst. 45, 45–67 (2014).

    Article 

    Google Scholar 

  • 2.

    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article 

    Google Scholar 

  • 3.

    Vellend, M. The Theory of Ecological Communities Vol. 57 (Princeton University Press, 2020).

    Google Scholar 

  • 4.

    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).

    Article 

    Google Scholar 

  • 5.

    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2351–2363 (2011).

    Article 

    Google Scholar 

  • 6.

    Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: Implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).

    Article 

    Google Scholar 

  • 7.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Google Scholar 

  • 8.

    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    Article 

    Google Scholar 

  • 9.

    Tuomisto, H. & Ruokolainen, K. Comment on “disentangling the drivers of β diversity along latitudinal and elevational gradients”. Science 335, 1573 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Harrison, S. Local and regional diversity in a patchy landscape: Native, alien, and endemic herbs on serpentine. Ecology 80, 70–80 (1999).

    Article 

    Google Scholar 

  • 11.

    Vellend, M. Parallel effects of land-use history on species diversity and genetic diversity of forest herbs. Ecology 85, 3043–3055 (2004).

    Article 

    Google Scholar 

  • 12.

    Pardini, R., de Souza, S. M., Braga-Neto, R. & Metzger, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Conserv. 124, 253–266 (2005).

    Article 

    Google Scholar 

  • 13.

    Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Qian, H., Chen, S., Mao, L. & Ouyang, Z. Drivers of β-diversity along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 22, 659–670 (2013).

    Article 

    Google Scholar 

  • 15.

    Marathe, A., Priyadarsanan, D. R., Krishnaswamy, J. & Shanker, K. Spatial and climatic variables independently drive elevational gradients in ant species richness in the Eastern Himalaya. PLoS ONE 15, e0227628 (2020).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Måsviken, J., Dalerum, F. & Cousins, S. A. Contrasting altitudinal variation of alpine plant communities along the Swedish mountains. Ecol. Evol. 10, 4838–4853 (2020).

    Article 

    Google Scholar 

  • 17.

    Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).

    Article 

    Google Scholar 

  • 18.

    Xu, W., Chen, G., Liu, C. & Ma, K. Latitudinal differences in species abundance distributions, rather than spatial aggregation, explain beta-diversity along latitudinal gradients. Glob. Ecol. Biogeogr. 24, 1170–1180 (2015).

    Article 

    Google Scholar 

  • 19.

    Mori, A. S. et al. Community assembly processes shape an altitudinal gradient of forest biodiversity. Glob. Ecol. Biogeogr. 22, 878–888 (2013).

    Article 

    Google Scholar 

  • 20.

    Stegen, J. C. et al. Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob. Ecol. Biogeogr. 22, 202–212 (2013).

    Article 

    Google Scholar 

  • 21.

    Kim, T. N., Bartel, S., Wills, B. D., Landis, D. A. & Gratton, C. Disturbance differentially affects alpha and beta diversity of ants in tallgrass prairies. Ecosphere 9, e02399 (2018).

    Article 

    Google Scholar 

  • 22.

    de Castro, F. S., Silva, P. G. D., Solar, R., Fernandes, G. W. & Neves, F. S. Environmental drivers of taxonomic and functional diversity of ant communities in a tropical mountain. Insect Conserv. Divers. 13, 393–403 (2020).

    Article 

    Google Scholar 

  • 23.

    Rodríguez, P. & Arita, H. T. Beta diversity and latitude in North American mammals: Testing the hypothesis of covariation. Ecography 27, 547–556 (2004).

    Article 

    Google Scholar 

  • 24.

    Agosti, D. & Alonso, L. The ALL protocol: A standard protocol for the collection of ground-dwelling ants. In Ants: Standard Methods for Measuring and Monitoring Biodiversity (eds Agosti, D. et al.) 204–206 (Smithsonian Institution Press, 2000).

    Google Scholar 

  • 25.

    Gotelli, N. J., Ellison, A. M., Dunn, R. R. & Sanders, N. J. Counting ants (Hymenoptera: Formicidae): Biodiversity sampling and statistical analysis for myrmecologists. Myrmecol. News 15, 13–19 (2011).

    Google Scholar 

  • 26.

    Greenslade, P. Sampling ants with pitfall traps: Digging-in effects. Insectes Soc. 20, 343–353 (1973).

    Article 

    Google Scholar 

  • 27.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Local adaptations of Mediterranean sheep and goats through an integrative approach

    Predicting spring migration of two European amphibian species with plant phenology using citizen science data