Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: A developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933. https://doi.org/10.1242/jeb.040865 (2010).
Google Scholar
IPBES. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia (eds Rounsevell, M. et al.) (IPBES, 2018).
Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Accessible habitat: An improved measure of the effects of habitat loss and roads on wildlife populations. Landsc. Ecol. 23, 159–168. https://doi.org/10.1007/s10980-007-9174-7 (2008).
Google Scholar
Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240. https://doi.org/10.1016/j.biocon.2005.09.031 (2006).
Google Scholar
Pittman, S. E., Osbourn, M. S. & Semlitsch, R. D. Movement ecology of amphibians: A missing component for understanding population declines. Biol. Conserv. 169, 44–53. https://doi.org/10.1016/j.biocon.2013.10.020 (2014).
Google Scholar
Heigl, F., Horvath, K., Laaha, G. & Zaller, J. G. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: Using a citizen science approach with open-access land cover data. BMC Ecol. 17, 1–11. https://doi.org/10.1186/s12898-017-0134-z (2017).
Google Scholar
Heigl, F. & Zaller, J. G. Using a citizen science approach in higher education: A case study reporting roadkills in Austria. Hum. Comput. https://doi.org/10.15346/hc.v1i2.7 (2014).
Google Scholar
Kyek, M., Kaufmann, P. H. & Lindner, R. Differing long term trends for two common amphibian species (Bufo bufo and Rana temporaria) in alpine landscapes of Salzburg, Austria. PLoS ONE 12, e0187148. https://doi.org/10.1371/journal.pone.0187148 (2017).
Google Scholar
Klepsch, R. et al. Amphibienschutz an Straßen. Leitbilder zu temporären und permanenten Schutzeinrichtungen. ÖGH-Aktuell, Mitteilungen der Österreichischen Gesellschaft für Herpetologie (2011).
Kropfberger, J. Naturschützer als Amphibientaxi. Amphibienschutzprojekte des naturschutzbund Oberösterreich. natur&land 103, 12–13 (2017).
Gross, M. Amphibienschutz an Niederösterreichs Straßen. natur&land 103, 16–18 (2017).
Kordges, T. & Weddeling, K. Immer früher? Langzeitmonitoring (1979–2013) zum Laichbeginn des Grasfrosches (Rana temporaria) im Felderbachtal in Hattingen (NRW). Zeitschrift für Feldherpetologie 24, 211–222 (2015).
Arnfield, H., Grant, R., Monk, C. & Uller, T. Factors influencing the timing of spring migration in common toads (Bufo bufo). J. Zool. 288, 112–118. https://doi.org/10.1111/j.1469-7998.2012.00933.x (2012).
Google Scholar
Timm, B. C., McGarigal, K. & Compton, B. W. Timing of large movement events of pond-breeding amphibians in Western Massachusetts USA. Biol. Conserv. 136, 442–454. https://doi.org/10.1016/j.biocon.2006.12.015 (2007).
Google Scholar
Dervo, B. K., Bærum, K. M., Skurdal, J. & Museth, J. Effects of temperature and precipitation on breeding migrations of amphibian species in southeastern Norway. Scientifica 2016, 3174316. https://doi.org/10.1155/2016/3174316 (2016).
Google Scholar
Loman, J. Breeding phenology in Rana temporaria. Local variation is due to pond temperature and population size. Ecol. Evolut. 6, 6202–6209. https://doi.org/10.1002/ece3.2356 (2016).
Google Scholar
Hofrichter, R. Amphibien: Evolution, Anatomie, Physiologie, Ökologie und Verbreitung, Verhalten, Bedrohung und Gefährdung (Naturbuch-Verl., 1998).
Hartel, T., Sas, I., Pernetta, A. P. & Geltsch, I. C. The reproductive dynamic of temperate amphibians: A review. North-Western J. Zool. 3, 127–145 (2007).
Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science 318, 1775–1777. https://doi.org/10.1126/science.1149374 (2007).
Google Scholar
Reading, C. J. The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia 117, 469–475. https://doi.org/10.1007/s004420050682 (1998).
Google Scholar
Tryjanowski, P., Rybacki, M. & Sparks, T. Changes in the first spawning dates of common frogs and common toads in western Poland in 1978–2002. Ann. Zool. Fennici 10, 459–464 (2003).
Mazgajska, J. & Mazgajski, T. D. Two amphibian species in the urban environment: Changes in the occurrence, spawning phenology and adult condition of common and green toads. Eur. Zool. J. 87, 170–179. https://doi.org/10.1080/24750263.2020.1744743 (2020).
Google Scholar
Scott, W. A., Pithart, D. & Adamson, J. K. Long-term United Kingdom trends in the breeding phenology of the common frog, Rana temporaria. hpet 42, 89–96. https://doi.org/10.1670/07-022.1 (2008).
Google Scholar
Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693. https://doi.org/10.1007/s00442-016-3610-9 (2016).
Google Scholar
Delpierre, N. et al. Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25. https://doi.org/10.1007/s13595-015-0477-6 (2016).
Google Scholar
Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001 (2012).
Google Scholar
Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8. https://doi.org/10.1007/s10342-012-0661-2 (2013).
Google Scholar
Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).
Google Scholar
ZAMG. PhenoWatch—ZAMG Phänologie. http://www.phenowatch.at/ (2020).
Naturschutzbund Österreich. naturbeobachtung.at: der Treffpunkt für Naturbeobachtung in Österreich (2020).
Citizen Science Working Group. Project roadkill. https://roadkill.at/ (2020).
Naturhistorisches Museum Wien. Naturhistorisches Museum Wien—Herpetofaunistische Datenbank. https://www.nhm-wien.ac.at/forschung/1_zoologie_wirbeltiere/herpetologische_sammlung/datenbank (2021).
Münch, D. Populationsentwicklung und klimatisch veränderte Frühjahrsaktivität von Erdkröte, Teichmolch, Bergmolch nd Kammolch an der Höfkerstraße (am NSG Hallerey in Dortmund 1981–1997). Dortmunder Beitr. Landeskde. Naturwiss. Mitt 32, 98–106 (1998).
Chmielewski, F.-M. & Rötzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 108, 101–112. https://doi.org/10.1016/S0168-1923(01)00233-7 (2001).
Google Scholar
Menzel, A. Phenology: Its importance to the global change community. Clim. Change 54, 379–385 (2002).
Google Scholar
Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol. Biogeogr. 15, 498–504. https://doi.org/10.1111/j.1466-822X.2006.00247.x (2006).
Google Scholar
Crimmins, M. A. & Crimmins, T. M. Does an early spring indicate an early summer? Relationships between intraseasonal growing degree day thresholds. J. Geophys. Res. Biogeosci. 124, 2628–2641. https://doi.org/10.1029/2019JG005297 (2019).
Google Scholar
Zentralanstalt für Meteorologie und Geodynamik. Beobachtungsanleitung für die Phänologie (2013).
Meier, U. (ed.) Growth stages of mono- and dicotyledonous plants. BBCH monograph = Entwicklungsstadien mono- und dikotyler Pflanzen (Blackwell-Wiss.-Verl., 1997).
Phillimore, A. B., Hadfield, J. D., Jones, O. R. & Smithers, R. J. Differences in spawning date between populations of common frog reveal local adaptation. Proc. Natl. Acad. Sci. 107, 8292–8297. https://doi.org/10.1073/pnas.0913792107 (2010).
Google Scholar
Auer, I. et al. HISTALP—Historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 27, 17–46. https://doi.org/10.1002/joc.1377 (2007).
Google Scholar
Hiebl, J. et al. A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. metz 18, 507–530. https://doi.org/10.1127/0941-2948/2009/0403 (2009).
Google Scholar
BMVIT—Bundesministerium für Verkehr, Innovation und Technologie. Gesamtverkehrsplan für Österreich. https://www.bmk.gv.at/dam/jcr:dfd82842-234b-41c7-a267-0dc7ac76eb6b/gvp_gesamt.pdf (2012).
European Environment Agency. Landscape fragmentation pressure and trends in Europe. https://www.eea.europa.eu/data-and-maps/indicators/mobility-and-urbanisation-pressure-on-ecosystems-2/assessment (2020).
Grillmayer, R., Banko, G., Leitner, H. & Leissing, D. Wie zerschnitten ist unsere Landschaft? natur&land, 30–31 (2015).
Weißmair, W. Monitoring ausgewählter Amphibienwanderstrecken—Endbericht 2010 Amt der Oö (Landesregierung, Abteilung Naturschutz, 2011).
Dick, G. & Sackl, P. Angaben zur Laichwanderung von Erdkröte, Bufo b. bufo (LINNAEUS; 1758), und Grasfrosch, Rana t. temporaria LINNAEUS, 1758, einiger Populationen im Waldviertel (Niederösterreich) sowie zu praktischen Schutzmaßnahmen. Herpetozoa 1, 13–22 (1988).
Wolf, M. J., Smole-Wiener, A. K. & Kleewein, A. Lebensraum- und Populationsanalyse am Beispiel der Amphibienwanderstrecke 37 Wernberg, Kärnten. Carinthia II 125, 741 (2015).
Kapeller, H. Amphibienschutz im Sellraintal. natur&land 103, 15 (2017).
Templ, B. et al. Pan European phenological database (PEP725): A single point of access for European data. Int. J. Biometeorol. 62, 1109–1113. https://doi.org/10.1007/s00484-018-1512-8 (2018).
Google Scholar
Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).
Google Scholar
Lanner, J., Huchler, K., Pachinger, B., Sedivy, C. & Meimberg, H. Dispersal patterns of an introduced wild bee, Megachile sculpturalis Smith, 1853 (Hymenoptera: Megachilidae) in European alpine countries. PLoS ONE 15, e0236042. https://doi.org/10.1371/journal.pone.0236042 (2020).
Google Scholar
Schweiger, S., Grillitsch, H., Hill, J. & Mayer, W. Die Mauereidechse, Podarcis muralis (Laurenti, 1768) in Österreich: Phylogeographie, Verbreitung, Lebensräume und Schutz. In Verbreitung, Biologie und Schutz der Mauereidechse Podarcis muralis (Laurenti, 1768) (eds Laufer, H. & Schulte, U.) 44–55 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde (DGHT) e.V, 2015).
Maletzky, A. & Schweiger, S. Zur Situation der Erdkröte, Bufo bufo in Österreich—Verbreitung, Phänologie, Gefährdung und Schutz. In Verbreitung, Biologie und Schutz der Erdkröte Bufo bufo (LINNAEUS, 1758) mit besonderer Berücksichtigung des Amphibienschutzes an Straßen (eds Maletzky, A. et al.) 58–66 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde, 2016).
Cabela, A., Grillitsch, H. & Tiedemann, F. Atlas zur Verbreitung und Ökologie der Amphibien und Reptilien in Österreich. Auswertung der herpetofaunistischen Datenbank der herpetologischen Sammlung des Naturhistorischen Museums in Wien (Naturhistorisches Museum, 2001).
Brunken, G. Amphibienwanderungen. Zwischen Land und Wasser. Merkblatt NVN/BSH 1–4 (2004).
Hiebl, J., Reisenhofer, S., Auer, I., Böhm, R. & Schöner, W. Multi-methodical realisation of Austrian climate maps for 1971–2000. Adv. Sci. Res. 6, 19–26. https://doi.org/10.5194/asr-6-19-2011 (2011).
Google Scholar
RStudio. RStudio—Take control of your R code. https://rstudio.com/products/rstudio/ (2020).
Source: Ecology - nature.com