in

Predicting spring migration of two European amphibian species with plant phenology using citizen science data

  • 1.

    Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: A developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933. https://doi.org/10.1242/jeb.040865 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    IPBES. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia (eds Rounsevell, M. et al.) (IPBES, 2018).

    Google Scholar 

  • 3.

    Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Accessible habitat: An improved measure of the effects of habitat loss and roads on wildlife populations. Landsc. Ecol. 23, 159–168. https://doi.org/10.1007/s10980-007-9174-7 (2008).

    Article 

    Google Scholar 

  • 4.

    Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240. https://doi.org/10.1016/j.biocon.2005.09.031 (2006).

    Article 

    Google Scholar 

  • 5.

    Pittman, S. E., Osbourn, M. S. & Semlitsch, R. D. Movement ecology of amphibians: A missing component for understanding population declines. Biol. Conserv. 169, 44–53. https://doi.org/10.1016/j.biocon.2013.10.020 (2014).

    Article 

    Google Scholar 

  • 6.

    Heigl, F., Horvath, K., Laaha, G. & Zaller, J. G. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: Using a citizen science approach with open-access land cover data. BMC Ecol. 17, 1–11. https://doi.org/10.1186/s12898-017-0134-z (2017).

    Article 

    Google Scholar 

  • 7.

    Heigl, F. & Zaller, J. G. Using a citizen science approach in higher education: A case study reporting roadkills in Austria. Hum. Comput. https://doi.org/10.15346/hc.v1i2.7 (2014).

    Article 

    Google Scholar 

  • 8.

    Kyek, M., Kaufmann, P. H. & Lindner, R. Differing long term trends for two common amphibian species (Bufo bufo and Rana temporaria) in alpine landscapes of Salzburg, Austria. PLoS ONE 12, e0187148. https://doi.org/10.1371/journal.pone.0187148 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Klepsch, R. et al. Amphibienschutz an Straßen. Leitbilder zu temporären und permanenten Schutzeinrichtungen. ÖGH-Aktuell, Mitteilungen der Österreichischen Gesellschaft für Herpetologie (2011).

  • 10.

    Kropfberger, J. Naturschützer als Amphibientaxi. Amphibienschutzprojekte des naturschutzbund Oberösterreich. natur&land 103, 12–13 (2017).

    Google Scholar 

  • 11.

    Gross, M. Amphibienschutz an Niederösterreichs Straßen. natur&land 103, 16–18 (2017).

    Google Scholar 

  • 12.

    Kordges, T. & Weddeling, K. Immer früher? Langzeitmonitoring (1979–2013) zum Laichbeginn des Grasfrosches (Rana temporaria) im Felderbachtal in Hattingen (NRW). Zeitschrift für Feldherpetologie 24, 211–222 (2015).

    Google Scholar 

  • 13.

    Arnfield, H., Grant, R., Monk, C. & Uller, T. Factors influencing the timing of spring migration in common toads (Bufo bufo). J. Zool. 288, 112–118. https://doi.org/10.1111/j.1469-7998.2012.00933.x (2012).

    Article 

    Google Scholar 

  • 14.

    Timm, B. C., McGarigal, K. & Compton, B. W. Timing of large movement events of pond-breeding amphibians in Western Massachusetts USA. Biol. Conserv. 136, 442–454. https://doi.org/10.1016/j.biocon.2006.12.015 (2007).

    Article 

    Google Scholar 

  • 15.

    Dervo, B. K., Bærum, K. M., Skurdal, J. & Museth, J. Effects of temperature and precipitation on breeding migrations of amphibian species in southeastern Norway. Scientifica 2016, 3174316. https://doi.org/10.1155/2016/3174316 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Loman, J. Breeding phenology in Rana temporaria. Local variation is due to pond temperature and population size. Ecol. Evolut. 6, 6202–6209. https://doi.org/10.1002/ece3.2356 (2016).

    Article 

    Google Scholar 

  • 17.

    Hofrichter, R. Amphibien: Evolution, Anatomie, Physiologie, Ökologie und Verbreitung, Verhalten, Bedrohung und Gefährdung (Naturbuch-Verl., 1998).

    Google Scholar 

  • 18.

    Hartel, T., Sas, I., Pernetta, A. P. & Geltsch, I. C. The reproductive dynamic of temperate amphibians: A review. North-Western J. Zool. 3, 127–145 (2007).

    Google Scholar 

  • 19.

    Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science 318, 1775–1777. https://doi.org/10.1126/science.1149374 (2007).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 20.

    Reading, C. J. The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia 117, 469–475. https://doi.org/10.1007/s004420050682 (1998).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 21.

    Tryjanowski, P., Rybacki, M. & Sparks, T. Changes in the first spawning dates of common frogs and common toads in western Poland in 1978–2002. Ann. Zool. Fennici 10, 459–464 (2003).

    Google Scholar 

  • 22.

    Mazgajska, J. & Mazgajski, T. D. Two amphibian species in the urban environment: Changes in the occurrence, spawning phenology and adult condition of common and green toads. Eur. Zool. J. 87, 170–179. https://doi.org/10.1080/24750263.2020.1744743 (2020).

    Article 

    Google Scholar 

  • 23.

    Scott, W. A., Pithart, D. & Adamson, J. K. Long-term United Kingdom trends in the breeding phenology of the common frog, Rana temporaria. hpet 42, 89–96. https://doi.org/10.1670/07-022.1 (2008).

    Article 

    Google Scholar 

  • 24.

    Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693. https://doi.org/10.1007/s00442-016-3610-9 (2016).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 25.

    Delpierre, N. et al. Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25. https://doi.org/10.1007/s13595-015-0477-6 (2016).

    Article 

    Google Scholar 

  • 26.

    Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001 (2012).

    Article 
    ADS 

    Google Scholar 

  • 27.

    Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8. https://doi.org/10.1007/s10342-012-0661-2 (2013).

    Article 

    Google Scholar 

  • 28.

    Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).

    Article 
    ADS 

    Google Scholar 

  • 29.

    ZAMG. PhenoWatch—ZAMG Phänologie. http://www.phenowatch.at/ (2020).

  • 30.

    Naturschutzbund Österreich. naturbeobachtung.at: der Treffpunkt für Naturbeobachtung in Österreich (2020).

  • 31.

    Citizen Science Working Group. Project roadkill. https://roadkill.at/ (2020).

  • 32.

    Naturhistorisches Museum Wien. Naturhistorisches Museum Wien—Herpetofaunistische Datenbank. https://www.nhm-wien.ac.at/forschung/1_zoologie_wirbeltiere/herpetologische_sammlung/datenbank (2021).

  • 33.

    Münch, D. Populationsentwicklung und klimatisch veränderte Frühjahrsaktivität von Erdkröte, Teichmolch, Bergmolch nd Kammolch an der Höfkerstraße (am NSG Hallerey in Dortmund 1981–1997). Dortmunder Beitr. Landeskde. Naturwiss. Mitt 32, 98–106 (1998).

    Google Scholar 

  • 34.

    Chmielewski, F.-M. & Rötzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 108, 101–112. https://doi.org/10.1016/S0168-1923(01)00233-7 (2001).

    Article 
    ADS 

    Google Scholar 

  • 35.

    Menzel, A. Phenology: Its importance to the global change community. Clim. Change 54, 379–385 (2002).

    Article 

    Google Scholar 

  • 36.

    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol. Biogeogr. 15, 498–504. https://doi.org/10.1111/j.1466-822X.2006.00247.x (2006).

    Article 

    Google Scholar 

  • 37.

    Crimmins, M. A. & Crimmins, T. M. Does an early spring indicate an early summer? Relationships between intraseasonal growing degree day thresholds. J. Geophys. Res. Biogeosci. 124, 2628–2641. https://doi.org/10.1029/2019JG005297 (2019).

    Article 

    Google Scholar 

  • 38.

    Zentralanstalt für Meteorologie und Geodynamik. Beobachtungsanleitung für die Phänologie (2013).

  • 39.

    Meier, U. (ed.) Growth stages of mono- and dicotyledonous plants. BBCH monograph = Entwicklungsstadien mono- und dikotyler Pflanzen (Blackwell-Wiss.-Verl., 1997).

    Google Scholar 

  • 40.

    Phillimore, A. B., Hadfield, J. D., Jones, O. R. & Smithers, R. J. Differences in spawning date between populations of common frog reveal local adaptation. Proc. Natl. Acad. Sci. 107, 8292–8297. https://doi.org/10.1073/pnas.0913792107 (2010).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 41.

    Auer, I. et al. HISTALP—Historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 27, 17–46. https://doi.org/10.1002/joc.1377 (2007).

    Article 

    Google Scholar 

  • 42.

    Hiebl, J. et al. A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. metz 18, 507–530. https://doi.org/10.1127/0941-2948/2009/0403 (2009).

    Article 

    Google Scholar 

  • 43.

    BMVIT—Bundesministerium für Verkehr, Innovation und Technologie. Gesamtverkehrsplan für Österreich. https://www.bmk.gv.at/dam/jcr:dfd82842-234b-41c7-a267-0dc7ac76eb6b/gvp_gesamt.pdf (2012).

  • 44.

    European Environment Agency. Landscape fragmentation pressure and trends in Europe. https://www.eea.europa.eu/data-and-maps/indicators/mobility-and-urbanisation-pressure-on-ecosystems-2/assessment (2020).

  • 45.

    Grillmayer, R., Banko, G., Leitner, H. & Leissing, D. Wie zerschnitten ist unsere Landschaft? natur&land, 30–31 (2015).

  • 46.

    Weißmair, W. Monitoring ausgewählter Amphibienwanderstrecken—Endbericht 2010 Amt der Oö (Landesregierung, Abteilung Naturschutz, 2011).

    Google Scholar 

  • 47.

    Dick, G. & Sackl, P. Angaben zur Laichwanderung von Erdkröte, Bufo b. bufo (LINNAEUS; 1758), und Grasfrosch, Rana t. temporaria LINNAEUS, 1758, einiger Populationen im Waldviertel (Niederösterreich) sowie zu praktischen Schutzmaßnahmen. Herpetozoa 1, 13–22 (1988).

    Google Scholar 

  • 48.

    Wolf, M. J., Smole-Wiener, A. K. & Kleewein, A. Lebensraum- und Populationsanalyse am Beispiel der Amphibienwanderstrecke 37 Wernberg, Kärnten. Carinthia II 125, 741 (2015).

    Google Scholar 

  • 49.

    Kapeller, H. Amphibienschutz im Sellraintal. natur&land 103, 15 (2017).

    Google Scholar 

  • 50.

    Templ, B. et al. Pan European phenological database (PEP725): A single point of access for European data. Int. J. Biometeorol. 62, 1109–1113. https://doi.org/10.1007/s00484-018-1512-8 (2018).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 51.

    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).

    Article 
    ADS 

    Google Scholar 

  • 52.

    Lanner, J., Huchler, K., Pachinger, B., Sedivy, C. & Meimberg, H. Dispersal patterns of an introduced wild bee, Megachile sculpturalis Smith, 1853 (Hymenoptera: Megachilidae) in European alpine countries. PLoS ONE 15, e0236042. https://doi.org/10.1371/journal.pone.0236042 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Schweiger, S., Grillitsch, H., Hill, J. & Mayer, W. Die Mauereidechse, Podarcis muralis (Laurenti, 1768) in Österreich: Phylogeographie, Verbreitung, Lebensräume und Schutz. In Verbreitung, Biologie und Schutz der Mauereidechse Podarcis muralis (Laurenti, 1768) (eds Laufer, H. & Schulte, U.) 44–55 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde (DGHT) e.V, 2015).

    Google Scholar 

  • 54.

    Maletzky, A. & Schweiger, S. Zur Situation der Erdkröte, Bufo bufo in Österreich—Verbreitung, Phänologie, Gefährdung und Schutz. In Verbreitung, Biologie und Schutz der Erdkröte Bufo bufo (LINNAEUS, 1758) mit besonderer Berücksichtigung des Amphibienschutzes an Straßen (eds Maletzky, A. et al.) 58–66 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde, 2016).

    Google Scholar 

  • 55.

    Cabela, A., Grillitsch, H. & Tiedemann, F. Atlas zur Verbreitung und Ökologie der Amphibien und Reptilien in Österreich. Auswertung der herpetofaunistischen Datenbank der herpetologischen Sammlung des Naturhistorischen Museums in Wien (Naturhistorisches Museum, 2001).

    Google Scholar 

  • 56.

    Brunken, G. Amphibienwanderungen. Zwischen Land und Wasser. Merkblatt NVN/BSH 1–4 (2004).

  • 57.

    Hiebl, J., Reisenhofer, S., Auer, I., Böhm, R. & Schöner, W. Multi-methodical realisation of Austrian climate maps for 1971–2000. Adv. Sci. Res. 6, 19–26. https://doi.org/10.5194/asr-6-19-2011 (2011).

    Article 

    Google Scholar 

  • 58.

    RStudio. RStudio—Take control of your R code. https://rstudio.com/products/rstudio/ (2020).


  • Source: Ecology - nature.com

    Bird population declines and species turnover are changing the acoustic properties of spring soundscapes

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity