in

Forest defoliator outbreaks alter nutrient cycling in northern waters

  • 1.

    Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130164 (2013).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 3, 132–142 (2018).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Tanentzap, A. J. et al. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci. Adv. 3, e1601765 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).

    Article 

    Google Scholar 

  • 5.

    Williamson, C. E., Morris, D. P., Pace, M. L. & Olson, O. G. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol. Oceanogr. 44, 795–803 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Tanentzap, A. J. et al. Cooling lakes while the world warms: effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnol. Oceanogr. 53, 404–410 (2008).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Gillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P. & Ackerman, J. D. The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environ. Toxicol. Chem. 29, 2519–2528 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Hessen, D. O. Inorganic nitrogen deposition and its impacts on N:P-ratios and lake productivity. Water 5, 327–341 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Bergström, A. K., Blomqvist, P. & Jansson, M. Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnol. Oceanogr. 50, 987–994 (2005).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Mikkelson, K. M. et al. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 115, 1–21 (2013).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Huber, C. Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National park. J. Environ. Qual. 34, 1772–1779 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Tokuchi, N., Ohte, N., Hobara, S., Kim, S.-J. & Masanori, K. Changes in biogeochemical cycling following forest defoliation by pine wilt disease in Kiryu experimental catchment in Japan. Hydrol. Process. 18, 2727–2736 (2004).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Clow, D. W., Rhoades, C., Briggs, J., Caldwell, M. & Lewis, W. M. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA. Appl. Geochem. 26, S174–S178 (2011).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Mikkelson, K. M., Dickenson, E. R., Maxwell, R. M., McCray, J. E. & Sharp, J. O. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Change 3, 218–222 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Rhoades, C. C. et al. Biogeochemistry of beetle-killed forests: explaining a weak nitrate response. Proc. Natl. Acad. Sci. 110, 1756–1760 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Hollinger, D. Y. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 70, 291–297 (1986).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).

    Article 

    Google Scholar 

  • 20.

    le Mellec, A., Gerold, G. & Michalzik, B. Insect herbivory, organic matter deposition and effects on belowground organic matter fluxes in a central European oak forest. Plant Soil 342, 393–403 (2011).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Carlisle, A., Brown, A. H. F. & White, E. J. Litter fall, leaf production and the effects of defoliation by tortrix viridana in a sessile Oak (Quercus Petraea) woodland. J. Ecol. 54, 65–85 (1966).

    Article 

    Google Scholar 

  • 23.

    Volney, W. J. A. & Fleming, R. A. Climate change and impacts of boreal forest insects. Agric. Ecosyst. Environ. 82, 283–294 (2000).

    Article 

    Google Scholar 

  • 24.

    le Mellec, A., Habermann, M. & Michalzik, B. Canopy herbivory altering C to N ratios and soil input patterns of different organic matter fractions in a Scots pine forest. Plant Soil 325, 255–262 (2009).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests: laboratory, plot, and watershed studies indicate that most of the nitrogen released from forest foliage as a result of defoliation by insects is redistributed within the ecosystem, whereas only a small fraction of nitrogen is lost by leaching. BioScience 52, 335–341 (2002).

    Article 

    Google Scholar 

  • 26.

    Lovett, G. M. & Ruesink, A. E. Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104, 133–138 (1995).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in Oak mesocosms. Ecology 85, 3335–3347 (2004).

    Article 

    Google Scholar 

  • 28.

    Eimers, M. C., Watmough, S. A., Paterson, A. M., Dillon, P. J. & Yao, H. Long-term declines in phosphorus export from forested catchments in south-central Ontario. Can. J. Fish. Aquat. Sci. 66, 1682–1692 (2009).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Meunier, C. L., Gundale, M. J., Sánchez, I. S. & Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Change Biol. 22, 164–179 (2016).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Kuiters, A. T. & Sarink, H. M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480 (1986).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Madritch, M. D., Donaldson, J. R. & Lindroth, R. L. Canopy herbivory can mediate the influence of plant genotype on soil processes through frass deposition. Soil Biol. Biochem. 39, 1192–1201 (2007).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Hall, R. J., Skakun, R. S. & Aresenault, E. Remotely Sensed Data in the Mapping of Insect Defoliation. in Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches 85–111 (2007).

  • 33.

    Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).

    Article 

    Google Scholar 

  • 34.

    Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Webb, J. R., Cosby, B. J., Deviney, F. A., Eshleman, K. N. & Galloway, J. N. Change in acid-base status of an appalachian mountain catchment following forest defoliation by the gypsy moth. Water Air. Soil Pollut. 85, 535–540 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Eshleman, K. N. et al. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resour. Res. 34, 2005–2116 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Reynolds, B. C., Hunter, M. D. & Crossley, D. A. Jr. Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina. Selbyana 21, 74–78 (2000).

    Google Scholar 

  • 38.

    Lewis, G. P. & Likens, G. E. Changes in stream chemistry associated with insect defoliation in a Pennsylvania hemlock-hardwoods forest. Forest Ecol. Manag. 238, 199–211 (2007).

    Article 

    Google Scholar 

  • 39.

    Wilkinson, G. M., Walter, J., Fleck, R. & Pace, M. L. Beyond the trends: the need to understand multiannual dynamics in aquatic ecosystems. Limnol. Oceanogr. Lett. 5, 281–286 (2020).

    Article 

    Google Scholar 

  • 40.

    Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Vuorenmaa, J. et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 625, 1129–1145 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    ICP Waters contributors. Dataset: trends in annual surface water chemistry for acid-sensitive regions in Europe and North America (1990 to 2012). ICP-Waters Programme Centre (2020).

  • 45.

    Christenson, L. M., Lovett, G. M., Mitchell, M. J. & Groffman, P. M. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131, 444–452 (2002).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Bormann, F. H. & Likens, G. E. Pattern and process in a forested ecosystem: disturbance, development and the steady state based on the Hubbard Brook ecosystem study. (Springer Science & Business Media, 2012).

  • 47.

    I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 160361 (2016).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Hillstrom, M., Meehan, T. D., Kelly, K. & Lindroth, R. L. Soil carbon and nitrogen mineralization following deposition of insect frass and greenfall from forests under elevated CO 2 and O 3. Plant Soil 336, 75–85 (2010).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Tranvik, L., Olofsson, H. & Bertilsson, S. Photochemical effects on bacterial degradation of dissolved organic matter in lake water. in Microbial Biosystems: New Frontiers, Proceedings of the 8th International Symposium on Microbial Ecology 193–200 (Atlantic Canada Society for Microbial Ecology Halifax, Canada, 1999).

  • 50.

    Bowden, R. D. et al. Litter input controls on soil carbon in a temperate deciduous forest. Soil Sci. Soc. Am. J. 78, S66–S75 (2014).

    Article 

    Google Scholar 

  • 51.

    Lovett, G. M., Hart, J. E., Christenson, L. M. & Jones, C. G. Caterpillar guts and ammonia volatilization: retention of nitrogen by gypsy moth larvae consuming oak foliage. Oecologia 117, 513–516 (1998).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Lovett, G. M., Arthur, M. A., Weathers, K. C. & Griffin, J. M. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 13, 1188–1200 (2010).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 12, 635–643 (2006).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 55.

    Giardina, C. P., Ryan, M. G., Hubbard, R. M. & Binkley, D. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci. Soc. Am. J. 65, 1272–1279 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 56.

    Ellsworth, D. S. et al. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob. Change Biol. 10, 2121–2138 (2004).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Huber, C., Baumgarten, M., Göttlein, A. & Rotter, V. Nitrogen turnover and nitrate leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest National Park. Water Air Soil Pollut. Focus 4, 391–414 (2004).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Griffin, J. M., Turner, M. G. & Simard, M. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. Ecol. Manag 261, 1077–1089 (2011).

    Article 

    Google Scholar 

  • 59.

    Turner, J. & Long, J. N. Accumulation of organic matter in a series of Douglas-fir stands. Can. J. Res. 5, 681–690 (1975).

    Article 

    Google Scholar 

  • 60.

    Turner, J. Nutrient cycling in Douglas-fir with respect to age and nutrient status. Ann. Bot. 42, 159–170 (1981).

    Article 

    Google Scholar 

  • 61.

    Gosz, J. R., Likens, G. E. & Bormann, F. H. Nutrient content of litter fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53, 770–784 (1972).

    Article 

    Google Scholar 

  • 62.

    Bridges, J. R. Nitrogen-fixing bacteria associated with bark beetles. Microb. Ecol. 7, 131–137 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Morehouse, K., Johns, T., Kaye, J. & Kaye, M. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. Foresr Ecol. Manag. 255, 2698–2708 (2008).

    Article 

    Google Scholar 

  • 64.

    Guseva, S. et al. Multimodel simulation of vertical gas transfer in a temperate lake. Hydrol. Earth Syst. Sci. 24, 697–715 (2020).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Watkins, E. M., Schindler, D. W., Turner, M. A. & Findlay, D. Effects of solar ultraviolet radiation on epilithic metabolism, and nutrient and community composition in a clear-water boreal lake. Can. J. Fish. Aquat. Sci. 58, 12 (2001).

    Article 

    Google Scholar 

  • 66.

    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Currie, D. J. & Kalff, J. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29, 298–310 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Rochelle-Newall, E. et al. Impacts of elevated atmospheric CO 2 concentration on terrestrial-aquatic carbon transfer and a downstream aquatic microbial community. Aquat. Sci. 80, 1–14 (2018).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Larsen, S., Andersen, T. & Hessen, D. O. Climate change predicted to cause severe increase of organic carbon in lakes. Glob. Change Biol. 17, 1186–1192 (2011).

    ADS 
    Article 

    Google Scholar 

  • 70.

    Kritzberg, E. S. et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375–390 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 71.

    Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, 1–33 (2014).

    Article 

    Google Scholar 

  • 72.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 73.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Pureswaran, D. S., Roques, A. & Battisti, A. Forest insects and climate change. Curr. Rep. 4, 35–50 (2018).

    Google Scholar 

  • 75.

    Karlsson, J. et al. Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol. Oceanogr. 57, 1042–1048 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 76.

    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model. Dev. 8, 1991–2007 (2015).

    ADS 
    Article 

    Google Scholar 

  • 77.

    Ministry of Natural Resources and Forestry (MNRF). Provincial Digital Elevation Model – Version 3.0. (2013).

  • 78.

    Wang, L. & Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 20, 193–213 (2006).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Candau, J.-N., Fleming, R. A. & Hopkin, A. Spatiotemporal patterns of large-scale defoliation caused by the spruce budworm in Ontario since 1941. Can. J. Res. 28, 1733–1741 (1998).

    Article 

    Google Scholar 

  • 80.

    Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  • 81.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

  • 82.

    Ontario Ministry of Natural Resources and Forestry – Provincial Mapping Unit. Ontario Integrated Hydrology Data. (2011).

  • 83.

    Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. https://peerj.com/preprints/913v1 (2015) https://doi.org/10.7287/peerj.preprints.913v1.

  • 84.

    Robinson, N. P. et al. A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sens. 9, 863 (2017).

    ADS 
    Article 

    Google Scholar 

  • 85.

    Eklundh, L., Jönsson, P. & Kuusk, A. Investigating modelled and observed Terra/MODIS 500-m reflectance data for viewing and illumination effects. Adv. Space Res. 39, 119–124 (2007).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).

    ADS 
    Article 

    Google Scholar 

  • 87.

    Olsson, P.-O., Heliasz, M., Jin, H. & Eklundh, L. Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks. Biogeosciences (2017) https://doi.org/10.5194/bg-14-1703-2017.

  • 88.

    Jönsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833–845 (2004).

    ADS 
    Article 

    Google Scholar 

  • 89.

    GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. (Open Source Geospatial Foundation, 2020).

  • 90.

    Etten, R. J. H. & J. van. raster: Geographic analysis and modeling with raster data. (2012).

  • 91.

    Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S. & Briggs, J. M. Relationships between leaf area index and landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 70, 52–68 (1999).

    ADS 
    Article 

    Google Scholar 

  • 92.

    Elzhov, T. V., Mullen, K. M., Spiess, A.-N. & Bolker, B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. (2016).

  • 93.

    Ministry of Natural Resources and Forestry. Dataset: Ontario Land Cover Compilation v.2.0. Ont. GeoHub (2020).

  • 94.

    Ontario Ministry of Environment. Handbook of Analytical Methods for Environmental Samples – Volumes 1 and 2. (1983).

  • 95.

    Dillon, P. J. & Molot, L. A. Long-term trends in catchment export and lake retention of dissolved organic carbon, dissolved organic nitrogen, total iron, and total phosphorus: The Dorset, Ontario, study, 1978–1998. J. Geophys. Res. Biogeosci. 110, (2005).

  • 96.

    Skjelkvåle, B. & others. ICP Waters Programme Manual 2010 (ICP Waters Report 105/2010). (2010).

  • 97.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020).

  • 98.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).


  • Source: Ecology - nature.com

    Bird population declines and species turnover are changing the acoustic properties of spring soundscapes

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity